Riunet Móvil

Home Versión de escritorio

Textual analysis of a Twitter corpus during the COVID-19 pandemics

Mostrar el registro sencillo del ítem

dc.contributor.author Astuti, Valerio es_ES
dc.contributor.author Crispino, Marta es_ES
dc.contributor.author Langiulli, Marco es_ES
dc.contributor.author Marcucci, Juri es_ES
dc.date.accessioned 2022-11-15T07:44:35Z
dc.date.available 2022-11-15T07:44:35Z
dc.date.issued 2022-09-20
dc.identifier.isbn 9788413960180
dc.identifier.uri http://hdl.handle.net/10251/189759
dc.description.abstract [EN] Text data gathered from social media are extremely up-to-date and have a great potential value for economic research. At the same time, they pose some challenges, as they require different statistical methods from the ones used for traditional data. The aim of this paper is to give a critical overview of three of the most common techniques used to extract information from text data: topic modelling, word embedding and sentiment analysis. We apply these methodologies to data collected from Twitter during the COVID-19 pandemic to investigate the influence the pandemic had on the Italian Twitter community and to discover the topics most actively discussed on the platform. Using these techniques of automated textual analysis, we are able to make inferences about the most important subjects covered over time and build real-time daily indicators of the sentiment expressed on this platform. es_ES
dc.format.extent 1 es_ES
dc.language Inglés es_ES
dc.publisher Editorial Universitat Politècnica de València es_ES
dc.relation.ispartof 4th International Conference on Advanced Research Methods and Analytics (CARMA 2022)
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Text as data es_ES
dc.subject Twitter es_ES
dc.subject Big data es_ES
dc.subject Sentiment es_ES
dc.subject COVID-19 es_ES
dc.subject Topic analysis es_ES
dc.subject Word embedding es_ES
dc.title Textual analysis of a Twitter corpus during the COVID-19 pandemics es_ES
dc.type Capítulo de libro es_ES
dc.type Comunicación en congreso es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Astuti, V.; Crispino, M.; Langiulli, M.; Marcucci, J. (2022). Textual analysis of a Twitter corpus during the COVID-19 pandemics. En 4th International Conference on Advanced Research Methods and Analytics (CARMA 2022). Editorial Universitat Politècnica de València. 276-276. http://hdl.handle.net/10251/189759 es_ES
dc.description.accrualMethod OCS es_ES
dc.relation.conferencename CARMA 2022 - 4th International Conference on Advanced Research Methods and Analytics es_ES
dc.relation.conferencedate Junio 29-Julio 01, 2022 es_ES
dc.relation.conferenceplace Valencia, España
dc.relation.publisherversion http://ocs.editorial.upv.es/index.php/CARMA/CARMA2022/paper/view/15782 es_ES
dc.description.upvformatpinicio 276 es_ES
dc.description.upvformatpfin 276 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.pasarela OCS\15782 es_ES


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

 

Tema móvil para Riunet