Riunet Móvil

Home Versión de escritorio

An interpretable machine learning workflow with an application to economic forecasting

Mostrar el registro sencillo del ítem

dc.contributor.author Buckmann, Marcus es_ES
dc.contributor.author Joseph, Andreas es_ES
dc.date.accessioned 2022-11-15T07:54:51Z
dc.date.available 2022-11-15T07:54:51Z
dc.date.issued 2022-09-20
dc.identifier.isbn 9788413960180
dc.identifier.uri http://hdl.handle.net/10251/189761
dc.description.abstract [EN] We propose a generic workflow for the use of machine learning models to inform decision making and to communicate modelling results with stakeholders. It involves three steps: (1) a comparative model evaluation, (2) a feature importance analysis and (3) statistical inference based on Shapley value decompositions. We discuss the different steps of the workflow in detail and demonstrate each by forecasting changes in US unemployment one year ahead using the well-established FRED-MD dataset. We find that universal function approximators from the machine learning literature, including gradient boosting and artificial neural networks, outperform more conventional linear models. This better performance is associated with greater flexibility, allowing the machine learning models to account for time-varying and nonlinear relationships in the data generating process. The Shapley value decomposition identifies economically meaningful nonlinearities learned by the models. Shapley regressions for statistical inference on machine learning models enable us to assess and communicate variable importance akin to conventional econometric approaches. While we also explore high-dimensional models, our findings suggest that the best trade-off between interpretability and performance of the models is achieved when a small set of variables is selected by domain experts. es_ES
dc.format.extent 1 es_ES
dc.language Inglés es_ES
dc.publisher Editorial Universitat Politècnica de València es_ES
dc.relation.ispartof 4th International Conference on Advanced Research Methods and Analytics (CARMA 2022)
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Machine learning es_ES
dc.subject Model interpretability es_ES
dc.subject Forecasting es_ES
dc.subject Unemployment es_ES
dc.subject Shapley values es_ES
dc.title An interpretable machine learning workflow with an application to economic forecasting es_ES
dc.type Capítulo de libro es_ES
dc.type Comunicación en congreso es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Buckmann, M.; Joseph, A. (2022). An interpretable machine learning workflow with an application to economic forecasting. En 4th International Conference on Advanced Research Methods and Analytics (CARMA 2022). Editorial Universitat Politècnica de València. 275-275. http://hdl.handle.net/10251/189761 es_ES
dc.description.accrualMethod OCS es_ES
dc.relation.conferencename CARMA 2022 - 4th International Conference on Advanced Research Methods and Analytics es_ES
dc.relation.conferencedate Junio 29-Julio 01, 2022 es_ES
dc.relation.conferenceplace Valencia, España
dc.relation.publisherversion http://ocs.editorial.upv.es/index.php/CARMA/CARMA2022/paper/view/15781 es_ES
dc.description.upvformatpinicio 275 es_ES
dc.description.upvformatpfin 275 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.pasarela OCS\15781 es_ES


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

 

Tema móvil para Riunet