Mostrar el registro sencillo del ítem
dc.contributor.author | Itodo, Joy Iyojo![]() |
es_ES |
dc.contributor.author | Ayo, Joseph Olusegun![]() |
es_ES |
dc.contributor.author | Rekwot, Ibrahim Peter![]() |
es_ES |
dc.contributor.author | Aluwong, Tagang![]() |
es_ES |
dc.contributor.author | Allam, Lushaikyaa![]() |
es_ES |
dc.contributor.author | Ibrahim, Shettima![]() |
es_ES |
dc.date.accessioned | 2023-01-11T11:23:42Z | |
dc.date.available | 2023-01-11T11:23:42Z | |
dc.date.issued | 2022-12-29 | |
dc.identifier.issn | 1257-5011 | |
dc.identifier.uri | http://hdl.handle.net/10251/191229 | |
dc.description.abstract | [EN] The study investigated the comparative influence of different extraction solvents on spermiogram, hormonal profiles and antioxidant activities in rabbit bucks. Adult New Zealand White rabbit bucks (n=18), with average live weight of 1.2±0.03 kg and aged 10-18 mo were fed ad libitum on a commercial diet. They were administered five different Azanza garckeana (AG) fruit pulp extracts at 500 mg/kg via oral gavage, comprising control group (Con), crude (AG Cr), methanol (AG M), n-hexane (AG H), ethyl acetate (AG E) and aqueous (AG AQ) for four weeks. The extracts improved the spermiogram in rabbit bucks administered methanol (AG M) and the reaction time was significantly (P<0.05) lower in AG E group when compared to other groups. The ejaculate volume, sperm motility, pH and sperm concentration were significantly (P<0.05) higher in the AG M group when compared to the other groups. There was a significant (P<0.05) increase in concentrations of blood testosterone, follicle-stimulating hormone and luteinising hormone in methanol extract group (AG M). While the glutathione and malondialdehyde concentrations were (P<0.05) lower, catalase and superoxide dismutase activities were significantly (P<0.05) higher in the groups administered methanol extract (AG M). It was concluded that AG M extracts of AG pulp elicited the best response in spermiogram, hormonal concentrations and antioxidant activities in New Zealand White rabbit bucks. Its use as the extraction solvent is recommended. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Universitat Politècnica de València | es_ES |
dc.relation.ispartof | World Rabbit Science | es_ES |
dc.rights | Reconocimiento - No comercial - Compartir igual (by-nc-sa) | es_ES |
dc.subject | Antioxidants | es_ES |
dc.subject | Azanza garckeana | es_ES |
dc.subject | Hormonal Profiles | es_ES |
dc.subject | Rabbit Bucks | es_ES |
dc.subject | Spermiogram | es_ES |
dc.title | Comparative evaluation of solvent extracts of Azanza garckeana fruit pulp on hormonal profiles, spermiogram and antioxidant activities in rabbit bucks | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.4995/wrs.2022.17256 | |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Itodo, JI.; Ayo, JO.; Rekwot, IP.; Aluwong, T.; Allam, L.; Ibrahim, S. (2022). Comparative evaluation of solvent extracts of Azanza garckeana fruit pulp on hormonal profiles, spermiogram and antioxidant activities in rabbit bucks. World Rabbit Science. 30(4):309-326. https://doi.org/10.4995/wrs.2022.17256 | es_ES |
dc.description.accrualMethod | OJS | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/wrs.2022.17256 | es_ES |
dc.description.upvformatpinicio | 309 | es_ES |
dc.description.upvformatpfin | 326 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 30 | es_ES |
dc.description.issue | 4 | es_ES |
dc.identifier.eissn | 1989-8886 | |
dc.relation.pasarela | OJS\17256 | es_ES |
dc.description.references | Abo-elsouda M.A., Hashema N.A., Nour El-Dina A.N.M., Kamel K.I., Hassana G.A. 2019. Soybean isoflavone affects in rabbits: Effects on metabolism, antioxidant capacity, hormonal balance and reproductive performance. Anim. Reprod. Sci., 203: 52-60. https://doi.org/10.1016/j.anireprosci.2019.02.007 | es_ES |
dc.description.references | Adienbo O.M., Nwafor A., Ogbomade R.S. 2013. Effect of hydromethanolic extract of Xylopia aethiopica on sexual behavior in | es_ES |
dc.description.references | male Wistar rats. Inter. J. Adv. Biol. Biomed. Res., 1: 1078-1085 | es_ES |
dc.description.references | Ahangarpour A., Heidari H., Oroojan A.A., Mirzavandi F., Esfehani N.K., Mohammadi D.Z. 2017. Antidiabetic, hypolipidemic and hepatoprotective effects of Arctium lappa root›s hydroalcoholic extract on nicotinamide-streptozotocin induced type 2 model of diabetes in male mice. Avicenna J. Phytomed., 7: 169-179. | es_ES |
dc.description.references | Alvarez J.G., Storey B.T. 1995. Differential incorporation of fatty acids into and peroxidative loss of fatty acids from phospholipids of human spermatozoa. Mol. Reprod. Dev., 42: 334-46. https://doi.org/10.1002/mrd.1080420311 | es_ES |
dc.description.references | Agarwal A., Saleh R.A., Bedaiwy M.A. 2003. Role of reactive oxygen species in the pathophysiology of human reproduction. Fertil. Steril., 79: 829-43. | es_ES |
dc.description.references | Agarwal A., Prabakaran A.A. 2005. Oxidative and antioxidants in male infertility: a different balance. Iran J. Reprod. Med., 3: 1-8. | es_ES |
dc.description.references | Association of Official Analytical Chemists (AOAC). 2012. Official Methods of Analysis 13th edn, Washington D.C., USA. | es_ES |
dc.description.references | Atmani D., Nassima C., Dina A. Meriem B. Nadjet D. Hania B. 2009. Flavonoids in human health: from structure to biological activity. Food Sci., 5: 225-237. https://doi.org/10.2174/157340109790218049 | es_ES |
dc.description.references | Attia Y.A., Kamel K.I. 2012. Semen quality, testosterone, seminal plasma biochemical and antioxidant profiles of rabbit bucks fed diets supplemented with different concentrations of soybean lecithin. Animal, 6: 824-833. https://doi.org/10.1017/S1751731111002229 | es_ES |
dc.description.references | Aybek H., Aybek Z., Rota S., Sen N., Akbulut M. 2008. The effect of diabetes mellitus, age and vitamin on testicular oxidative stress. Fertil. Steril., 90: 755-760. https://doi.org/10.1016/j.fertnstert.2007.01.101 | es_ES |
dc.description.references | Azwanida N.N. 2015. A Review on the Extraction Methods Use in Medicinal Plants, Principle, Strength and Limitation. Med. Aromatic Plants, 4: 243-151. | es_ES |
dc.description.references | Baumber J., Ball B.A., Gravance C.G., Medina V., Davies-Morel M.C. 2000. The effect of reactive oxygen species on equine sperm motility, viability, acrosomal integrity, mitochondrial membrane potential, and membrane lipid peroxidation. J. Androl., 21: 895-902. | es_ES |
dc.description.references | Beers Jr. R., Sizer I., 1952. A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J. Biol. Chem., 195: 133-140. https://doi.org/10.1016/S0021-9258(19)50881-X | es_ES |
dc.description.references | Bisby R.H., Brooke R., Navaratnam S. 2008. Effect of antioxidant oxidation potential in the oxygen radical absorption capacity (ORAC) assay. Food Chem., 108: 1002-1007. https://doi.org/10.1016/j.foodchem.2007.12.012 | es_ES |
dc.description.references | Boonsorn T., Kongbuntad W., Nakkong N.A., Aengwanich W. 2010. Effects of catechin addition to extender on sperm quality and lipid peroxidation in boar semen. Amer-Eurasian J. Agric. Environ Sci., 7: 283-288. | es_ES |
dc.description.references | Carlsen M.H., Halvorsen B.L., Holte K., Bohn S.K., Dragland S., Sampson L., Willey L., Senoo H., Umezono Y., Sanada C. 2010. The total antioxidant content of more than 3100 foods, beverages, spices, herbs and supplements used worldwide. Nutr. J., 9: 3-18. https://doi.org/10.1186/1475-2891-9-3 | es_ES |
dc.description.references | Chang F.R., Li P.S., Huang R., Liu L. 2018. Bioactive phenolic components from the twigs of Atalantia buxifolia. J. Nat. Prod., 81: 1534-1539. https://doi.org/10.1021/acs.jnatprod.7b00938 | es_ES |
dc.description.references | Capasso A. 2013. Antioxidant action and therapeutic efficacy of Allium sativum L. Molecules, 18: 690-700. https://doi.org/10.3390/molecules18010690 | es_ES |
dc.description.references | Dikko Y.J., Khan M.E., Tor-Anyiin T.A., Anyam J.V., Linus U.A. 2016. In vitro antimicrobial activity of fruit pulp extracts of Azanza garckeana (F. Hoffm.) Exell & Hillc. and isolation of one of its active principles, Betulinic Acid. British J. Pharm. Res., 14: 1-10. https://doi.org/10.9734/BJPR/2016/30152 | es_ES |
dc.description.references | Dobrzyñska M.M., Baumgartner A., Anderson D. 2004. Antioxidants modulate thyroid hormone- and noradrenalineinduced DNA damage in human sperm. Mutagenesis, 19: 325-330. https://doi.org/10.1093/mutage/geh037 | es_ES |
dc.description.references | Edward Y.B., Edward N.B., Tyeng T.D. 2021. A chemical overview of Azanza garckeana. Biol. Med. Nat. Prod. Chem., 9: 91-95. https://doi.org/10.14421/biomedich.2020.92.91-95 | es_ES |
dc.description.references | Enechi O.C., Okagu I.U., Amah C.C., Ononiwu P.C., Igwe J.F., Onyekaozulu C.R. 2021. Flavonoid-rich extract of buchholzia coriacea English seeds reverses Plasmodium berghei-modified haematological and biochemical status in mice. Sci. Afr., 12: 748-756. https://doi.org/10.1016/j.sciaf.2021.e00748 | es_ES |
dc.description.references | Ellman G.L. 1959. Tissue sulphydryl group. Arch. Biochem. Biophy., 82: 70-77. https://doi.org/10.1016/0003-9861(59)90090-6 | es_ES |
dc.description.references | Fridovich I. 1989. Superoxide dismutases. An adaptation to a paramagnetic gas. J. Biol. Chem., 264: 7761-7764. https://doi.org/10.1016/S0021-9258(18)83102-7 | es_ES |
dc.description.references | Ghosh D., Das U.B., Mallick M., Debnath J. 2002. Testicular gametogenic and steroidogenic activities in cyclophosphamide treated rat: A correlative study with testicular oxidative stress. Drug Chem. Toxicol., 25: 281-292. https://doi.org/10.1081/DCT-120005891 | es_ES |
dc.description.references | Glew R.S., Vanderjagt D.J., Chuang L.T., Huang Y.S., Millson M., Glew, R.H. 2005. Nutrient content of four edible wild plants from West Africa. Plant Food Human Nutr., 60: 187-193. https://doi.org/10.1007/s11130-005-8616-0 | es_ES |
dc.description.references | Gupta V.K., Sharma S.K. 2006. Plants as natural antioxidants. Nat. Prod. Rad., 5: 326-334. | es_ES |
dc.description.references | Hasler C.M., Blumberg J.B. 1999. Introduction. J. Nutr., 129: 756-757. https://doi.org/10.1093/jn/129.3.756S | es_ES |
dc.description.references | Hamden K., Carreau S., Jamoussi K., Ayadi F., Garmazi F., Mezgenni N., Elfeki A. 2008. Inhibitory effects of 1alpha, 25dihydroxyvitamin D3 and Ajuga iva extract on oxidative stress, toxicity and hypo-fertility in diabetic rat testes. J. Physiol. Biochem., 64: 231-239. https://doi.org/10.1007/BF03216108 | es_ES |
dc.description.references | Iloki-Assanga S.B., Lewis-Luján L.M., Lara-Espinoza C.L., Gil-Salido A.A., Fernández-Angulo D., Rubio-Pino J.L., Haines D.D. 2015. Solvent effects on phytochemical constituent profiles and antioxidant activities, using four different extraction formulations for analysis of Bucida buceras and Phoradendron californicum. Natl. Lib. Med., 1: 396-405. https://doi.org/10.1186/s13104-015-1388-1 | es_ES |
dc.description.references | Itodo J.I., Rekwot P.I., Aluwong T., Allam L., Ayo J.O. 2022. Effects of Different Extracts of Azanza garckeana fruit pulp on Haematological and Biochemical Parameters of New Zealand White (NZW) Rabbit bucks. Comp. Clinc. Path., 1-11. https://doi.org/10.4314/bajopas.v9i2.38 | es_ES |
dc.description.references | Jacob C., Shehu Z., Danbature W.L., Karu E. 2016 Proximate analysis of the fruit Azanza garckeana (“goron tula”) Bayero J. Pure Appl. Sci., 9: 221-224. https://doi.org/10.4314/bajopas.v9i2.38 | es_ES |
dc.description.references | Kaur P., Bansal M.P. 2003. Effect of oxidative stress on the spermatogenic process and hsp70 expression in mice testes. India J. Biochem. Biophys., 40: 246-251. | es_ES |
dc.description.references | Lawal B., Ossai P.C., Shittu O.K., Abubakar A.N. 2014. Evaluation of phytochemicals, proximate, minerals anti-nutritional compositions of yam peel, maize chaff, bean coat. Intern. J. Applied Biol. Res., 6: 1-17. | es_ES |
dc.description.references | Lorke D. 1983. A new approach to practical acute toxicity testing, Arch. Toxicol., 54: 275-287. https://doi.org/10.1007/BF01234480 | es_ES |
dc.description.references | Maroyi A. 2011. The gathering and consumption of wild edible plants in Nhema communal area, Midlands Province, Zimbabwe. Ecol. Food Nut., 50: 506-525. https://doi.org/10.1080/03670244.2011.620879 | es_ES |
dc.description.references | Maroyi A. 2012. Local plant use and traditional conservation practices in Nhema communal area, Zimbabwe. International J. African Renaissance Studies Multi-Inter. Transdiscipl., 7: 109-128. https://doi.org/10.1080/18186874.2012.699934 | es_ES |
dc.description.references | Maroyi A., Cheikh-Youssef A. 2017. Traditional knowledge of wild edible fruits in southern Africa: A comparative use patterns in Namibia and Zimbabwe. Indian J. Trad. Knowl., 16: 385-392. | es_ES |
dc.description.references | Middleton E., Kandaswami C., Theoharides T.C. 2000. The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer. Pharmacol. Rev., 52: 673-751. | es_ES |
dc.description.references | Meli R., Monnolo A., Chiara A.C., Pirozzi C., Ferrante M.C. 2020. Oxidative stress and BPA toxicity: An antioxidant approach for male and female reproductive dysfunction. Antioxidants, 9: 405-429. https://doi.org/10.3390/antiox9050405 | es_ES |
dc.description.references | Nantia E.A., Moundipa P.F., Monsees T.K., Carreau S. 2009. Medicinal plants as potential male anti-infertility agents: a review. Androl., 19: 148-158. https://doi.org/10.1007/s12610-009-0030-2 | es_ES |
dc.description.references | Ngo T.V., Scarlett C.J., Bowyer M.C., Ngo P.D., Vuong Q.V. 2017. Impact of different extraction solvents on bioactive compounds and antioxidant capacity from the root of Salacia chinensis. J. Food Quality, 29: 34-49. https://doi.org/10.1155/2017/9305047 | es_ES |
dc.description.references | Nguyen H.C., Lin K.H., Huang M.Y. 2018. Antioxidant activities of the methanol extracts of various parts of Phalaenopsis orchids with white, yellow, and purple flowers. Notulae Botanicae Horti Agrobotanici Cluj-Napoca., 46: 457-465. https://doi.org/10.15835/nbha46211038 | es_ES |
dc.description.references | Nkafamiya I.I., Ardo B.P., Osemeahon S.A., Akinterinwa A. 2015. Evaluation of nutritional, non-nutritional, elemental content and amino acid profile of Azanza garckeana (goron tula). British J. Appl. Sc. Tech., 12: 1-10. https://doi.org/10.9734/BJAST/2016/19811 | es_ES |
dc.description.references | Ochokwu I.J., Dasuki A., Oshoke J.O. 2015. Azanza garckeana (goron tula) as an edible indigenous fruit in north eastern part of Nigeria. J. Biol. Agric. Health-care, 5: 26-31. | es_ES |
dc.description.references | Oda S.S., Waheeb R.S. 2017. Ginger attenuated Di (N-butyl) phthalate-induced reproductive toxicity in pubertal male rabbits. World Rabbit Sci., 25: 387-398. https://doi.org/10.4995/wrs.2017.7466 | es_ES |
dc.description.references | Ogbu C.P., Okagu I.U., Nwodo O.F. 2020. Antiinflammatory activities of ethanol extract of Combretum zenkeri leaves. Comp. Clin. Path., 29: 397-409. https://doi.org/10.1007/s00580-019-03072-0 | es_ES |
dc.description.references | Pauzenga U. 1985. Feeding parent stock. Zootech. Inter., 22-25. Purdy P.H., Ericsson S.A., Dodsona R.E., Sternes K.L., Garner D.L. 2004. Effects of the flavonoids, silibinin and catechin, on the motility of extended cooled caprine sperm. Small Rum. Res., 55: 239-243. https://doi.org/10.1016/j.smallrumres.2004.02.005 | es_ES |
dc.description.references | Rajagopalan R., Aruna K., Penumathsa S., Rajasekharan K., Menon, V. 2004. Comparative effects of curcumin and an analogue of curcumin on alcohol and PUFA induced oxidative stress. J. Pharm. Pharm. Sci., 7: 273-283. | es_ES |
dc.description.references | Rekwot P.I., Oyedipe E.O., Dawuda P.M, Sekoni V.O. 1997. Age and hourly related changes of the serum testosterone and spermiogram of prepubertal bulls fed two levels of nutrition. Vet. J., 153: 341-347. https://doi.org/10.1016/S1090-0233(97)80068-8 | es_ES |
dc.description.references | Ryszard A. 2007. Tannins: the new natural antioxidants? Eur. J. Lipid Sci. Tech., 109: 549-551. https://doi.org/10.1002/ejlt.200700145 | es_ES |
dc.description.references | Saleh S.Y., Tony M., Sawiress F., Hassannin A. 2015. Protective role of some feed additives against in Dizocelpine induced oxidative stress in testes of rabbit bucks. J. Agric. Sci., 7: 36-46. https://doi.org/10.5539/jas.v7n10p239 | es_ES |
dc.description.references | Saxena G., Saxena J., Nema R., Singh D., Gupta A. 2013. Phytochemistry of medicinal plants. J. Pharmacol. Phytochem., 2: 34-46. | es_ES |
dc.description.references | Shinkut M., Rekwot P.I., Aluwong T., Bugau J.S., Samuel F.U., Bawa E.K. 2020. Effects of melatonin and Allium sativum (garlic) on dibutyl phthalate induced oxidative stress on serum hormones and lipid profile of rabbit bucks. Alex. J. Vet. Sci., 66: 1-10. https://doi.org/10.5455/ajvs.70467 | es_ES |
dc.description.references | Singh A.K., Bharati R.C., Manibhushan N.C., Pedpati A. 2013. An assessment of faba bean (Vicia faba) current status and future prospect. Afr. J. Agric. Res., 8: 6634-6641. | es_ES |
dc.description.references | Smith J.T., Mayer D.T. 1955. Evaluation of sperm concentration by the haemocytometer method. Comparison of four counting fluids. Fertil. Steril., 6: 271-275. https://doi.org/10.1016/S0015-0282(16)31987-2 | es_ES |
dc.description.references | Stern K. 1937. On the absorption spectrum of catalase. J. Biol. Chem., 121561-121572. | es_ES |
dc.description.references | Subasinghe S.K., Ogbuehi K.C., Mitchell L. 2021. Animal model with structural similarity to human corneal collagen fibrillar arrangement. Anat. Sci. Inter., 96: 286-293. https://doi.org/10.1007/s12565-020-00590-8 | es_ES |
dc.description.references | Tijjani I.M., Bello I., Aliyu A., Olunnshe T., Logun Z. 2007. Phytochemical and antibacterial study of root extract Cochlospermum tinctoricm. Am. Res. J. Med. Plant., 3: 16-22. https://doi.org/10.3923/rjmp.2009.16.22 | es_ES |
dc.description.references | Truong D.H., Nguyen D.H., Anh-Ta N.T., Bui V.O., Do T.H., Nguyen H.C. 2019. Evaluation of the use of different solvents for phytochemical constituents, antioxidants, and in vitro antiinflammatory activities of Severinia buxifolia. J. Food Quality, 27: 165-178. https://doi.org/10.1155/2019/8178294 | es_ES |
dc.description.references | Tsado A.N., Lawal B., Mohammed S.S., Famous I.O., Yahaya A.M., Shu’aibu M. 2015. Phytochemical composition antimalarial activity of methanol leaf extract of Crateva adansonii in pberghei infected mice. J. British Biotech., 6: 65-173. https://doi.org/10.9734/BBJ/2015/16038 | es_ES |
dc.description.references | Wadood A., Ghufran M., Babar S.J., Naeem M., Khan A., Ghaffar R. 2013. Phytochemical analysis of medicinal plants occurring in local area of Mardan. Anal. Biochem., 2: 1-4. https://doi.org/10.4172/2161-1009.1000144 | es_ES |
dc.description.references | Wu S.B., Long C., Kennelly E.J. 2013. Phytochemistry and health benefits of jaboticaba, an emerging fruit crop from Brazil. Food Res. Intern., 54: 148-159. https://doi.org/10.1016/j.foodres.2013.06.021 | es_ES |
dc.description.references | Yadav M., Chatterji S., Gupta S.K., Watal G. 2014. Preliminary phytochemical screening of six medicinal plants used in traditional medicine. Int. J. Pharm. Sci., 6: 30-34. | es_ES |
dc.description.references | Yeh Y.C., Hui C.L., Chih T.T., Lieng L.W., Chuan L.W., Yang W.K., Chun H.L. 2007. Protection by doxycycline against doxorubicin-Induced oxidative stress and apoptosis in mouse testes. Biochem. Pharmacol., 74: 969-980. https://doi.org/10.1016/j.bcp.2007.06.031 | es_ES |
dc.description.references | Yen G.C., Chen C.S., Chang W.T. 2018. Antioxidant activity and anticancer effect of ethanolic and aqueous extracts of the roots of Ficus beecheyana and their phenolic components. J. Food Drug Anal., 26: 182-192. https://doi.org/10.1016/j.jfda.2017.02.002 | es_ES |
dc.description.references | Yusuf A.A., Lawal B., Abubakar A.N., Berinyuy E.B., Omonije Y.O., Umar S.I. 2018. In-vitro antioxidants, antimicrobial and toxicological evaluation of Nigerian Zingiber officinale. Clin. Phytosc., 4: 1-8. | es_ES |
dc.description.references | Yusuf A.A., Garba R., Alawode R.A., Adesina A.D., Oluwajobi I., Ariyeloye S.D., Mohammad I.A., Agboola R.A., Salisu L., Abubakar S., Dan-Mallam U., Berinyuy B.E. 2020a. Effect of drying methods and extractants on secondary metabolite compositions of Azanza garckeana pulp and shaft. Inter. J. Agric. Food Tech., 2: 1-7. | es_ES |
dc.description.references | Yusuf A.A., Lawal B., Sani S., Garba R., Mohammed B.A., Oshevire D.B., Adesina D.A. 2020b. Pharmacological activities of Azanza garckeana (goron tula) grown in Nigeria. Clin. Phytosc., 6: 27-33. https://doi.org/10.1186/s40816-020-00173-0 | es_ES |
dc.description.references | Zhoung R., Zhou D. 2013. Oxidative stress and role of natural plant derived antioxidants in animal reproduction - Review. J. Integ. Agric., 12: 1826-1838. https://doi.org/10.1016/S2095-3119(13)60412-8 | es_ES |