Riunet Móvil

Home Versión de escritorio

A continuum and computational framework for viscoelastodynamics: I. Finite deformation linear models

Mostrar el registro sencillo del ítem

dc.contributor.author Liu, Ju es_ES
dc.contributor.author Latorre, Marcos es_ES
dc.contributor.author Marsden, Alison L. es_ES
dc.date.accessioned 2023-01-23T19:00:40Z
dc.date.available 2023-01-23T19:00:40Z
dc.date.issued 2021-11-01 es_ES
dc.identifier.issn 0045-7825 es_ES
dc.identifier.uri http://hdl.handle.net/10251/191446
dc.description.abstract [EN] This work concerns the continuum basis and numerical formulation for deformable materials with viscous dissipative mechanisms. We derive a viscohyperelastic modeling framework based on fundamental thermomechanical principles. Since most large deformation problems exhibit isochoric properties, our modeling work is constructed based on the Gibbs free energy in order to develop a continuum theory using pressure-primitive variables, which is known to be well-behaved in the incompressible limit. A set of general evolution equations for the internal state variables is derived. With that, we focus on a family of free energies that leads to the so-called finite deformation linear model. Our derivation elucidates the origin of the evolution equations of that model, which was originally proposed heuristically and thus lacked formal compatibility with the underlying thermodynamics. In our derivation, the thermodynamic inconsistency is clarified and rectified. A classical model based on the identical polymer chain assumption is revisited and is found to have non-vanishing viscous stresses in the equilibrium limit, which is counter-intuitive in the physical sense. Because of that, we then discuss the relaxation property of the non-equilibrium stress in the thermodynamic equilibrium limit and its implication on the form of free energy. A modified version of the identical polymer chain model is then proposed, with a special case being the model proposed by G. Holzapfel and J. Simo. Based on the consistent modeling framework, a provably energy stable numerical scheme is constructed for incompressible viscohyperelasticity using inf¿sup stable elements. In particular, we adopt a suite of smooth generalization of the Taylor¿Hood element based on Non-Uniform Rational B-Splines (NURBS) for spatial discretization. The temporal discretization is performed via the generalized-alpha scheme. We present a suite of numerical results to corroborate the proposed numerical properties, including the nonlinear stability, robustness under large deformation, and the stress accuracy resolved by the higher-order elements. Additionally, the pathological behavior of the original identical polymer chain model is numerically identified with an unbounded energy decaying. This again underlines the importance of demanding vanishing non-equilibrium stress in the equilibrium limit. es_ES
dc.description.sponsorship We want to thank Prof. Jay D. Humphrey at Yale University for helpful discussions. This work is supported by the startup grant provided by the Southern University of Science and Technology, China under the award number Y01326127, the Guangdong-Hong Kong-Macao Joint Laboratory for Data-Driven Fluid Mechanics and Engineering Applications under the award number 2020B1212030001, the National Institutes of Health, United States under the award numbers 1R01HL121754, 1R01HL123689, R01EB01830204, and the computational resources from the Center for Computational Science and Engineering at Southern University of Science and Technology, China es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Computer Methods in Applied Mechanics and Engineering es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Continuum mechanics es_ES
dc.subject Gibbs free energy es_ES
dc.subject Viscoelasticity es_ES
dc.subject Incompressible solids es_ES
dc.subject Isogeometric analysis es_ES
dc.subject Nonlinear stability es_ES
dc.title A continuum and computational framework for viscoelastodynamics: I. Finite deformation linear models es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.cma.2021.114059 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NIH//R01 HL121754//The Cardiac Atlas Project/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NIH//R01 HL123689/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NIH//R01 EB01830204/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/SUSTech//Y01326127 / es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Guangdong-Hong Kong-Macao Joint Laboratory for Data-Driven Fluid Mechanics and Engineering Applications//2020B1212030001 / es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Liu, J.; Latorre, M.; Marsden, AL. (2021). A continuum and computational framework for viscoelastodynamics: I. Finite deformation linear models. Computer Methods in Applied Mechanics and Engineering. 385:1-41. https://doi.org/10.1016/j.cma.2021.114059 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.cma.2021.114059 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 41 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 385 es_ES
dc.relation.pasarela S\472456 es_ES
dc.contributor.funder National Institutes of Health, EEUU es_ES
dc.contributor.funder Southern University of Science and Technology es_ES
dc.contributor.funder Guangdong-Hong Kong-Macao Joint Laboratory for Data-Driven Fluid Mechanics and Engineering Applications es_ES
dc.relation.references 10.1016/j.compstruc.2017.05.003 es_ES
dc.relation.references 10.1016/S0997-7538(01)01206-2 es_ES
dc.relation.references 10.1063/1.1711937 es_ES
dc.relation.references 10.1016/j.ijplas.2010.06.005 es_ES
dc.relation.references 10.1016/j.mechrescom.2015.06.009 es_ES
dc.relation.references 10.1103/RevModPhys.33.239 es_ES
dc.relation.references 10.1007/BF00253942 es_ES
dc.relation.references 10.1115/1.3153787 es_ES
dc.relation.references 10.1177/1081286506062450 es_ES
dc.relation.references 10.1007/BF00283864 es_ES
dc.relation.references 10.1115/1.2834308 es_ES
dc.relation.references 10.1016/j.jcp.2016.06.038 es_ES
dc.relation.references 10.1007/s10439-014-0970-3 es_ES
dc.relation.references 10.1088/0031-9155/53/17/006 es_ES
dc.relation.references 10.1142/S0218202502001714 es_ES
dc.relation.references 10.1002/cnm.2555 es_ES
dc.relation.references 10.1090/noti2278 es_ES
dc.relation.references 10.1061/(ASCE)0899-1561(2001)13:1(26) es_ES
dc.relation.references 10.1002/nme.5591 es_ES
dc.relation.references 10.1002/nme.1620370705 es_ES
dc.relation.references 10.1016/S0020-7683(97)00217-5 es_ES
dc.relation.references 10.1023/A:1009795431265 es_ES
dc.relation.references 10.1016/j.cma.2006.09.009 es_ES
dc.relation.references 10.1016/j.jmps.2007.11.010 es_ES
dc.relation.references 10.1016/0093-6413(85)90075-8 es_ES
dc.relation.references 10.1016/0045-7825(92)90170-O es_ES
dc.relation.references 10.1007/s00466-015-1184-8 es_ES
dc.relation.references 10.1016/j.compstruc.2015.09.001 es_ES
dc.relation.references 10.1016/0045-7825(87)90107-1 es_ES
dc.relation.references 10.1002/(SICI)1097-0207(19961130)39:22<3903::AID-NME34>3.0.CO;2-C es_ES
dc.relation.references 10.1016/S0045-7825(00)00323-6 es_ES
dc.relation.references 10.1016/j.cma.2011.08.022 es_ES
dc.relation.references 10.1016/0020-7683(92)90167-R es_ES
dc.relation.references 10.1103/PhysRev.52.230 es_ES
dc.relation.references 10.1103/PhysRev.53.90 es_ES
dc.relation.references 10.1002/nme.1620020106 es_ES
dc.relation.references 10.1007/s004660050171 es_ES
dc.relation.references 10.1016/0020-7683(95)00263-4 es_ES
dc.relation.references 10.1016/j.jbiomech.2008.06.019 es_ES
dc.relation.references 10.1007/s00707-010-0378-6 es_ES
dc.relation.references 10.1016/j.ijsolstr.2014.06.022 es_ES
dc.relation.references 10.1007/BF01262690 es_ES
dc.relation.references 10.1007/BF00251666 es_ES
dc.relation.references 10.1016/0020-7225(71)90086-3 es_ES
dc.relation.references 10.1007/s00466-013-0869-0 es_ES
dc.relation.references 10.1016/j.cma.2018.03.045 es_ES
dc.relation.references 10.1016/0045-7825(94)90055-8 es_ES
dc.relation.references 10.1016/S0045-7825(97)00043-1 es_ES
dc.relation.references 10.1016/j.jcp.2019.01.019 es_ES
dc.relation.references 10.1016/j.cma.2020.113122 es_ES
dc.relation.references 10.1002/nme.6165 es_ES
dc.relation.references 10.1016/j.mechrescom.2020.103556 es_ES
dc.relation.references 10.1002/fld.2337 es_ES
dc.relation.references 10.1016/j.amc.2015.03.104 es_ES
dc.relation.references 10.1002/nme.6550 es_ES
dc.relation.references 10.1016/j.cma.2004.10.008 es_ES
dc.relation.references 10.1016/j.cma.2009.01.021 es_ES
dc.relation.references 10.1016/j.cma.2009.01.022 es_ES
dc.relation.references 10.1016/j.cma.2008.01.012 es_ES
dc.relation.references 10.1142/S0218202512500583 es_ES
dc.relation.references 10.1016/j.jcp.2003.09.007 es_ES
dc.relation.references 10.1039/tf9615700829 es_ES
dc.relation.references 10.1016/0045-7825(85)90033-7 es_ES
dc.relation.references 10.1016/S0022-5096(00)00023-5 es_ES
dc.relation.references 10.1016/j.euromechsol.2007.04.001 es_ES
dc.relation.references 10.1016/j.cma.2015.09.007 es_ES
dc.relation.references 10.1016/j.ijengsci.2013.03.005 es_ES
dc.relation.references 10.1007/s00707-012-0805-y es_ES
dc.relation.references 10.1007/BF00279992 es_ES
dc.relation.references 10.1016/j.ijsolstr.2010.04.005 es_ES
dc.relation.references 10.1007/s00466-018-1602-9 es_ES
dc.relation.references 10.1063/1.1707442 es_ES
dc.relation.references 10.1080/10255842.2016.1176155 es_ES
dc.relation.references 10.1115/1.3564580 es_ES
dc.relation.references 10.1016/S0045-7825(01)00349-8 es_ES
dc.relation.references 10.1002/nme.3144 es_ES
dc.relation.references 10.1016/S0020-7683(00)00215-8 es_ES
dc.relation.references 10.1016/j.jmps.2018.09.014 es_ES
dc.relation.references 10.1016/S0022-5096(99)00017-4 es_ES
dc.relation.references 10.1016/j.jmps.2005.04.006 es_ES
dc.relation.references 10.1016/0045-7825(92)90115-Z es_ES
dc.relation.references 10.1007/s00466-012-0693-y es_ES
dc.relation.references 10.1002/zamm.201300268 es_ES
dc.relation.references 10.1002/nme.1620080303 es_ES
dc.relation.references 10.1002/nme.1620030303 es_ES
dc.relation.references 10.1115/1.2900803 es_ES
dc.relation.references 10.1016/S0045-7825(00)00203-6 es_ES
dc.relation.references 10.1016/j.compstruc.2017.08.013 es_ES
dc.relation.references 10.1002/eqe.4290060111 es_ES
dc.relation.references 10.1002/nme.5138 es_ES
dc.relation.references 10.1016/j.cma.2018.04.021 es_ES
dc.relation.references 10.1002/nme.5217 es_ES
dc.relation.references 10.1002/(SICI)1097-0207(19990620)45:5<569::AID-NME595>3.0.CO;2-A es_ES
dc.relation.references 10.1002/nme.1525 es_ES
dc.subject.ods 03.- Garantizar una vida saludable y promover el bienestar para todos y todas en todas las edades es_ES


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

 

Tema móvil para Riunet