Riunet Móvil

Home Versión de escritorio

Control predictivo polifásico mediante dos constelaciones de vectores virtuales de tensión

Mostrar el registro sencillo del ítem

dc.contributor.author Garrido Satué, Manuel es_ES
dc.contributor.author Ruiz Arahal, Manuel es_ES
dc.contributor.author Rodríguez Ramírez, Daniel es_ES
dc.contributor.author Barrero García, Federico es_ES
dc.date.accessioned 2023-11-07T13:10:16Z
dc.date.available 2023-11-07T13:10:16Z
dc.date.issued 2023-09-29
dc.identifier.issn 1697-7912
dc.identifier.uri http://hdl.handle.net/10251/199437
dc.description.abstract [EN] In the field of variable speed electric drives, the predictive method based on virtual voltage vectors has recently appeared. This method allows to reduce the voltage contribution in the x-y subspace, in which no torque is produced, but losses. This not only limits the losses but also reduces the tuning complexity of the predictive controller. The virtual voltage vectors are obtained by combining tension vectors belonging to different small, medium and large crowns in addition to the null vectors. In a typical application, first the crown(s) to be used are chosen and then the virtual vectors are developed. The predictive controller uses in each sampling period the most suitable virtual vector. In this work we propose the use of several sets of virtual vectors coming from different combinations of crowns. For each operating point of the electric drive, the set that provides the best values of a certain goodness criterion is used. The proposed method is experimentally validated using a six-phase induction machine. es_ES
dc.description.abstract [ES] En el campo de los accionamientos eléctricos de velocidad variable ha aparecido recientemente el método predictivo basado en vectores virtuales de tensión. Este método permite reducir la contribuci´on del voltaje en el subespacio x-y, en el cual no se produce par, sino pérdidas. De este modo no sólo se limitan las pérdidas sino que se reduce la complejidad de sintonía del controlador predictivo. Los vectores virtuales de tensión se obtienen mediante combinación de vectores de tensión pertenencientes a distintas coronas pequeña, media y grande además de los vectores nulos. En una aplicación típica se elige en primer lugar la(s) corona(s) a usar y después se desarrollan los vectores virtuales. El controlador predictivo usa en cada periodo de muestreo el vector virtual más adecuado. En este trabajo se propone el uso de varios conjuntos de vectores virtuales provenientes de diferentes  combinaciones de coronas. Para cada punto de operación del accionamiento eléctrico se utiliza el conjunto que proporciona mejores valores de cierto criterio de bondad. El método propuesto es validado experimentalmente usando una máquina de inducción de seis fases. es_ES
dc.description.sponsorship Este trabajo es parte de los proyectos TED2021-129558BC22 (financiado por el Ministerio de Ciencia e Innovación Agencia Estatal de Investigación de España MCIN/AEI/10.13039/ 501100011033 y tambien por Unión Europea NextGenerationEU/ PRTR) y PID2021-125189OB-I00 (financiado por MCIN/ AEI /10.13039/ 501100011033/FEDER, UE Ministerio de Ciencia e Innovación, Agencia Estatal de Investigación de España y el Fondo Europeo de Desarrollo Regional). es_ES
dc.language Español es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Revista Iberoamericana de Automática e Informática industrial es_ES
dc.rights Reconocimiento - No comercial - Compartir igual (by-nc-sa) es_ES
dc.subject Induction machines es_ES
dc.subject Multi-phase systems es_ES
dc.subject Performance maps es_ES
dc.subject Predictive control es_ES
dc.subject Virtual-voltage-vectors es_ES
dc.subject Máquinas de inducción es_ES
dc.subject Sistemas polifásicos es_ES
dc.subject Mapa de rendimiento es_ES
dc.subject Control Predictivo es_ES
dc.subject Vectores virtuales de tensión es_ES
dc.title Control predictivo polifásico mediante dos constelaciones de vectores virtuales de tensión es_ES
dc.title.alternative Multi-phase predictive control using two virtual-voltage-vector constellations es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/riai.2023.19205
dc.relation.projectID info:eu-repo/grantAgreement/AEI//TED2021-129558BC22 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//PID2021-125189OB-I00 es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Garrido Satué, M.; Ruiz Arahal, M.; Rodríguez Ramírez, D.; Barrero García, F. (2023). Control predictivo polifásico mediante dos constelaciones de vectores virtuales de tensión. Revista Iberoamericana de Automática e Informática industrial. 20(4):347-354. https://doi.org/10.4995/riai.2023.19205 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/riai.2023.19205 es_ES
dc.description.upvformatpinicio 347 es_ES
dc.description.upvformatpfin 354 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 20 es_ES
dc.description.issue 4 es_ES
dc.identifier.eissn 1697-7920
dc.relation.pasarela OJS\19205 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Arahal, M. R., Barrero, F., Bermúdez, M., Satué, M. G., 2022. Predictive stator current control of a five-phase motor using a hybrid control set. IEEE Journal of Emerging and Selected Topics in Power Electronics. https://doi.org/10.1109/JESTPE.2022.3172138 es_ES
dc.description.references Arahal, M. R., Kowal, A., Barrerro, F., Castilla, M. d. M., 2019. Optimización de funciones de coste para control predictivo de máquinas de inducci'on multifásicas. Revista Iberoamericana de Automática e Informática Industrial 16 (1), 48-55. https://doi.org/10.4995/riai.2018.9771 es_ES
dc.description.references Arahal, M. R., Satué, M. G., Barrero, F., Ortega, M. G., 2021. Adaptive cost function FCSMPC for 6-phase IMs. Energies 14 (17), 5222. https://doi.org/10.3390/en14175222 es_ES
dc.description.references Ben Slimene, M., Khlifi, M. A., 2022. Investigation on the effects of magnetic saturation in six-phase induction machines with and without cross saturation of the main flux path. Energies 15 (24), 9412. https://doi.org/10.3390/en15249412 es_ES
dc.description.references Bermúdez, M., Martín, C., González-Prieto, I., Durán, M. J., Arahal, M. R., Barrero, F., 2020. Predictive current control in electrical drives: an illustrated review with case examples using a five-phase induction motor drive with distributed windings. IET Electric Power Applications 14 (8), 1291-1310. https://doi.org/10.1049/iet-epa.2019.0667 es_ES
dc.description.references Camacho, E. F., Bordons, C., 2013. Model predictive control. Springer. es_ES
dc.description.references Duran, M. J., Gonzalez-Prieto, I., Gonzalez-Prieto, A., Aciego, J. J., 2022. The evolution of model predictive control in multiphase electric drives: A growing field of research. IEEE Industrial Electronics Magazine 16 (4), 29-39. https://doi.org/10.1109/MIE.2022.3169291 es_ES
dc.description.references Elmorshedy, M. F., Xu, W., El-Sousy, F. F., Islam, M. R., Ahmed, A. A., 2021. Recent achievements in model predictive control techniques for industrial motor: A comprehensive state-of-the-art. IEEE Access 9, 58170-58191. https://doi.org/10.1109/ACCESS.2021.3073020 es_ES
dc.description.references Entrambasaguas, P. G., Prieto, I. G., Martínez, M. J. D., Guzmán, M. B., García, F. J. B., 2018. Vectores virtuales de tensión en control directo de par para una máquina de inducción de seis fases. Revista Iberoamericana de Automática e Informática industrial 15 (3), 277-285. https://doi.org/10.4995/riai.2018.9837 es_ES
dc.description.references Garcia-Entrambasaguas, P., Zoric, I., Gonzalez-Prieto, I., Duran, M. J., Levi, E., 2019. Direct torque and predictive control strategies in nine-phase electric drives using virtual voltage vectors. IEEE Transactions on Power Electronics 34 (12), 12106-12119. https://doi.org/10.1109/TPEL.2019.2907194 es_ES
dc.description.references Gonçalves, P. F., Cruz, S. M., Mendes, A. M., 2019. Bi-subspace predictive current control of six-phase PMSM drives based on virtual vectors with optimal amplitude. IET Electric Power Applications 13 (11), 1672-1683. https://doi.org/10.1049/iet-epa.2019.0136 es_ES
dc.description.references Gonzalez-Prieto, A., González-Prieto, I., Duran, M. J., Aciego, J. J., 2022. Dynamic response in multiphase electric drives: Control performance and influencing factors. Machines 10 (10), 866. https://doi.org/10.3390/machines10100866 es_ES
dc.description.references Gonzalez-Prieto, I., Duran, M. J., Aciego, J. J., Martin, C., Barrero, F., 2017. Model predictive control of six-phase induction motor drives using virtual voltage vectors. IEEE Transactions on Industrial Electronics 65 (1), 27-37. https://doi.org/10.1109/TIE.2017.2714126 es_ES
dc.description.references Holtz, J., Stadtfeld, S., 1983. A predictive controller for the stator current vector of AC machines fed from a switched voltage source. In: JIEE IPEC-Tokyo Conf. pp. 1665-1675. es_ES
dc.description.references Kali, Y., Rodas, J., Doval-Gandoy, J., Ayala, M., Gonzalez, O., 2023. Enhanced reaching-law-based discrete-time terminal sliding mode current control of a six-phase induction motor. Machines 11 (1), 107. https://doi.org/10.3390/machines11010107 es_ES
dc.description.references Lim, C. S., Lee, S. S., Levi, E., 2022. Continuous-control-set model predictive current control of asymmetrical six-phase drives considering system nonidealities. IEEE Transactions on Industrial Electronics. https://doi.org/10.1109/TIE.2022.3206703 es_ES
dc.description.references Lim, C.-S., Levi, E., Jones, M., Rahim, N., Hew, W.-P., Aug 2014. A comparative study of synchronous current control schemes based on FCS-MPC and PI-PWM for a two-motor three-phase drive. Industrial Electronics, IEEE Transactions on 61 (8), 3867-3878. https://doi.org/10.1109/TIE.2013.2286573 es_ES
dc.description.references Luo, Y., Liu, C., 2018. A flux constrained predictive control for a six-phase PMSM motor with lower complexity. IEEE Transactions on Industrial Electronics 66 (7), 5081-5093. https://doi.org/10.1109/TIE.2018.2868301 es_ES
dc.description.references Luo, Y., Liu, C., 2019. Model predictive control for a six-phase PMSM motor with a reduced-dimension cost function. IEEE Transactions on Industrial Electronics 67 (2), 969-979. https://doi.org/10.1109/TIE.2019.2901636 es_ES
dc.description.references Mamdouh, M., Abido, M. A., 2022. Simple predictive current control of asymmetrical six-phase induction motor with improved performance. IEEE Transactions on Industrial Electronics. https://doi.org/10.1016/j.aej.2021.09.003 es_ES
dc.description.references Martín, C., Bermúdez, M., Barrero, F., Arahal, M. R., Kestelyn, X., Durán, M. J., 2017. Sensitivity of predictive controllers to parameter variation in five-phase induction motor drives. Control Engineering Practice 68, 23-31. https://doi.org/10.1016/j.conengprac.2017.08.001 es_ES
dc.description.references Mwasilu, F., Kim, E.-K., Rafaq, M. S., Jung, J.-W., 2017. Finite-set model predictive control scheme with an optimal switching voltage vector technique for high-performance IPMSM drive applications. IEEE Transactions on Industrial Informatics 14 (9), 3840-3848. https://doi.org/10.1109/TII.2017.2787639 es_ES
dc.description.references Preindl, M., Bolognani, S., 2013. Model predictive direct speed control with finite control set of PMSM drive systems. IEEE Transactions on Power Electronics 28 (2), 1007-1015. https://doi.org/10.1109/TPEL.2012.2204277 es_ES
dc.description.references Riveros, J. A., Yepes, A. G., Barrero, F., Doval-Gandoy, J., Bogado, B., Lopez, O., Jones, M., Levi, E., 2012. Parameter identification of multiphase induction machines with distributed windings-part 2: Time-domain techniques. IEEE Transactions on Energy Conversion 27 (4), 1067-1077. https://doi.org/10.1109/TEC.2012.2219862 es_ES
dc.description.references Satué, M. G., Arahal, M. R., Ramírez, D. R., 2023. Estimación de intensidades rotóricas en máquinas polifásicas para control predictivo. Revista Iberoamericana de Automática e Informática industrial 20 (1), 25-31. https://doi.org/10.4995/riai.2022.17153 es_ES
dc.description.references Serra, J., Cardoso, A. J. M., 2022. A simplified model predictive control for asymmetrical six-phase induction motors that eliminates the weighting factor. Machines 10 (12), 1189. https://doi.org/10.3390/machines10121189 es_ES
dc.description.references Shawier, A., Habib, A., Mamdouh, M., Abdel-Khalik, A. S., Ahmed, K. H., 2021. Assessment of predictive current control of six-phase induction motor with different winding configurations. IEEE Access. https://doi.org/10.1109/ACCESS.2021.3085083 es_ES
dc.description.references Tawfiq, K. B., Ibrahim, M. N., Sergeant, P., 2022. Power loss analysis of a fivephase drive system using a synchronous reluctance motor and an indirect matrix converter with reduced switching losses. Machines 10 (9), 738. https://doi.org/10.3390/machines10090738 es_ES
dc.description.references Wang, H.,Wu, X., Zheng, X., Yuan, X., 2022. Model predictive current control of nine-phase open-end winding pmsms with an online virtual vector synthesis strategy. IEEE Transactions on Industrial Electronics 70 (3), 2199-2208. https://doi.org/10.1109/TIE.2022.3174241 es_ES
dc.description.references Wei, J., Kong, X., Tao, W., Zhang, Z., Zhou, B., 2022. The torque ripple optimization of open-winding permanent magnet synchronous motor with direct torque control strategy over a wide bus voltage ratio range. IEEE Transactions on Power Electronics 37 (6), 7156-7168. https://doi.org/10.1109/TPEL.2022.3146155 es_ES
dc.description.references Xue, C., Song, W., Feng, X., 2017. Finite control-set model predictive current control of five-phase permanent-magnet synchronous machine based on virtual voltage vectors. IET Electric Power Applications 11 (5), 836-846. https://doi.org/10.1049/iet-epa.2016.0529 es_ES
dc.relation.references 10.1109/JESTPE.2022.3172138 es_ES
dc.relation.references 10.4995/riai.2018.9771 es_ES
dc.relation.references 10.3390/en14175222 es_ES
dc.relation.references 10.3390/en15249412 es_ES
dc.relation.references 10.1049/iet-epa.2019.0667 es_ES
dc.relation.references 10.1109/MIE.2022.3169291 es_ES
dc.relation.references 10.1109/ACCESS.2021.3073020 es_ES
dc.relation.references 10.4995/riai.2018.9837 es_ES
dc.relation.references 10.1109/TPEL.2019.2907194 es_ES
dc.relation.references 10.1049/iet-epa.2019.0136 es_ES
dc.relation.references 10.3390/machines10100866 es_ES
dc.relation.references 10.1109/TIE.2017.2714126 es_ES
dc.relation.references 10.3390/machines11010107 es_ES
dc.relation.references 10.1109/TIE.2022.3206703 es_ES
dc.relation.references 10.1109/TIE.2013.2286573 es_ES
dc.relation.references 10.1109/TIE.2018.2868301 es_ES
dc.relation.references 10.1109/TIE.2019.2901636 es_ES
dc.relation.references 10.1109/TIE.2022.3217588 es_ES
dc.relation.references 10.1016/j.conengprac.2017.08.001 es_ES
dc.relation.references 10.1109/TII.2017.2787639 es_ES
dc.relation.references 10.1109/TPEL.2012.2204277 es_ES
dc.relation.references 10.1109/TEC.2012.2219862 es_ES
dc.relation.references 10.4995/riai.2022.17153 es_ES
dc.relation.references 10.3390/machines10121189 es_ES
dc.relation.references 10.1109/ACCESS.2021.3085083 es_ES
dc.relation.references 10.3390/machines10090738 es_ES
dc.relation.references 10.1109/TIE.2022.3174241 es_ES
dc.relation.references 10.1109/TPEL.2022.3146155 es_ES
dc.relation.references 10.1049/iet-epa.2016.0529 es_ES


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

 

Tema móvil para Riunet