Mostrar el registro sencillo del ítem
dc.contributor.author | Garrido Satué, Manuel | es_ES |
dc.contributor.author | Ruiz Arahal, Manuel | es_ES |
dc.contributor.author | Rodríguez Ramírez, Daniel | es_ES |
dc.contributor.author | Barrero García, Federico | es_ES |
dc.date.accessioned | 2023-11-07T13:10:16Z | |
dc.date.available | 2023-11-07T13:10:16Z | |
dc.date.issued | 2023-09-29 | |
dc.identifier.issn | 1697-7912 | |
dc.identifier.uri | http://hdl.handle.net/10251/199437 | |
dc.description.abstract | [EN] In the field of variable speed electric drives, the predictive method based on virtual voltage vectors has recently appeared. This method allows to reduce the voltage contribution in the x-y subspace, in which no torque is produced, but losses. This not only limits the losses but also reduces the tuning complexity of the predictive controller. The virtual voltage vectors are obtained by combining tension vectors belonging to different small, medium and large crowns in addition to the null vectors. In a typical application, first the crown(s) to be used are chosen and then the virtual vectors are developed. The predictive controller uses in each sampling period the most suitable virtual vector. In this work we propose the use of several sets of virtual vectors coming from different combinations of crowns. For each operating point of the electric drive, the set that provides the best values of a certain goodness criterion is used. The proposed method is experimentally validated using a six-phase induction machine. | es_ES |
dc.description.abstract | [ES] En el campo de los accionamientos eléctricos de velocidad variable ha aparecido recientemente el método predictivo basado en vectores virtuales de tensión. Este método permite reducir la contribuci´on del voltaje en el subespacio x-y, en el cual no se produce par, sino pérdidas. De este modo no sólo se limitan las pérdidas sino que se reduce la complejidad de sintonía del controlador predictivo. Los vectores virtuales de tensión se obtienen mediante combinación de vectores de tensión pertenencientes a distintas coronas pequeña, media y grande además de los vectores nulos. En una aplicación típica se elige en primer lugar la(s) corona(s) a usar y después se desarrollan los vectores virtuales. El controlador predictivo usa en cada periodo de muestreo el vector virtual más adecuado. En este trabajo se propone el uso de varios conjuntos de vectores virtuales provenientes de diferentes combinaciones de coronas. Para cada punto de operación del accionamiento eléctrico se utiliza el conjunto que proporciona mejores valores de cierto criterio de bondad. El método propuesto es validado experimentalmente usando una máquina de inducción de seis fases. | es_ES |
dc.description.sponsorship | Este trabajo es parte de los proyectos TED2021-129558BC22 (financiado por el Ministerio de Ciencia e Innovación Agencia Estatal de Investigación de España MCIN/AEI/10.13039/ 501100011033 y tambien por Unión Europea NextGenerationEU/ PRTR) y PID2021-125189OB-I00 (financiado por MCIN/ AEI /10.13039/ 501100011033/FEDER, UE Ministerio de Ciencia e Innovación, Agencia Estatal de Investigación de España y el Fondo Europeo de Desarrollo Regional). | es_ES |
dc.language | Español | es_ES |
dc.publisher | Universitat Politècnica de València | es_ES |
dc.relation.ispartof | Revista Iberoamericana de Automática e Informática industrial | es_ES |
dc.rights | Reconocimiento - No comercial - Compartir igual (by-nc-sa) | es_ES |
dc.subject | Induction machines | es_ES |
dc.subject | Multi-phase systems | es_ES |
dc.subject | Performance maps | es_ES |
dc.subject | Predictive control | es_ES |
dc.subject | Virtual-voltage-vectors | es_ES |
dc.subject | Máquinas de inducción | es_ES |
dc.subject | Sistemas polifásicos | es_ES |
dc.subject | Mapa de rendimiento | es_ES |
dc.subject | Control Predictivo | es_ES |
dc.subject | Vectores virtuales de tensión | es_ES |
dc.title | Control predictivo polifásico mediante dos constelaciones de vectores virtuales de tensión | es_ES |
dc.title.alternative | Multi-phase predictive control using two virtual-voltage-vector constellations | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.4995/riai.2023.19205 | |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI//TED2021-129558BC22 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI//PID2021-125189OB-I00 | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Garrido Satué, M.; Ruiz Arahal, M.; Rodríguez Ramírez, D.; Barrero García, F. (2023). Control predictivo polifásico mediante dos constelaciones de vectores virtuales de tensión. Revista Iberoamericana de Automática e Informática industrial. 20(4):347-354. https://doi.org/10.4995/riai.2023.19205 | es_ES |
dc.description.accrualMethod | OJS | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/riai.2023.19205 | es_ES |
dc.description.upvformatpinicio | 347 | es_ES |
dc.description.upvformatpfin | 354 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 20 | es_ES |
dc.description.issue | 4 | es_ES |
dc.identifier.eissn | 1697-7920 | |
dc.relation.pasarela | OJS\19205 | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.description.references | Arahal, M. R., Barrero, F., Bermúdez, M., Satué, M. G., 2022. Predictive stator current control of a five-phase motor using a hybrid control set. IEEE Journal of Emerging and Selected Topics in Power Electronics. https://doi.org/10.1109/JESTPE.2022.3172138 | es_ES |
dc.description.references | Arahal, M. R., Kowal, A., Barrerro, F., Castilla, M. d. M., 2019. Optimización de funciones de coste para control predictivo de máquinas de inducci'on multifásicas. Revista Iberoamericana de Automática e Informática Industrial 16 (1), 48-55. https://doi.org/10.4995/riai.2018.9771 | es_ES |
dc.description.references | Arahal, M. R., Satué, M. G., Barrero, F., Ortega, M. G., 2021. Adaptive cost function FCSMPC for 6-phase IMs. Energies 14 (17), 5222. https://doi.org/10.3390/en14175222 | es_ES |
dc.description.references | Ben Slimene, M., Khlifi, M. A., 2022. Investigation on the effects of magnetic saturation in six-phase induction machines with and without cross saturation of the main flux path. Energies 15 (24), 9412. https://doi.org/10.3390/en15249412 | es_ES |
dc.description.references | Bermúdez, M., Martín, C., González-Prieto, I., Durán, M. J., Arahal, M. R., Barrero, F., 2020. Predictive current control in electrical drives: an illustrated review with case examples using a five-phase induction motor drive with distributed windings. IET Electric Power Applications 14 (8), 1291-1310. https://doi.org/10.1049/iet-epa.2019.0667 | es_ES |
dc.description.references | Camacho, E. F., Bordons, C., 2013. Model predictive control. Springer. | es_ES |
dc.description.references | Duran, M. J., Gonzalez-Prieto, I., Gonzalez-Prieto, A., Aciego, J. J., 2022. The evolution of model predictive control in multiphase electric drives: A growing field of research. IEEE Industrial Electronics Magazine 16 (4), 29-39. https://doi.org/10.1109/MIE.2022.3169291 | es_ES |
dc.description.references | Elmorshedy, M. F., Xu, W., El-Sousy, F. F., Islam, M. R., Ahmed, A. A., 2021. Recent achievements in model predictive control techniques for industrial motor: A comprehensive state-of-the-art. IEEE Access 9, 58170-58191. https://doi.org/10.1109/ACCESS.2021.3073020 | es_ES |
dc.description.references | Entrambasaguas, P. G., Prieto, I. G., Martínez, M. J. D., Guzmán, M. B., García, F. J. B., 2018. Vectores virtuales de tensión en control directo de par para una máquina de inducción de seis fases. Revista Iberoamericana de Automática e Informática industrial 15 (3), 277-285. https://doi.org/10.4995/riai.2018.9837 | es_ES |
dc.description.references | Garcia-Entrambasaguas, P., Zoric, I., Gonzalez-Prieto, I., Duran, M. J., Levi, E., 2019. Direct torque and predictive control strategies in nine-phase electric drives using virtual voltage vectors. IEEE Transactions on Power Electronics 34 (12), 12106-12119. https://doi.org/10.1109/TPEL.2019.2907194 | es_ES |
dc.description.references | Gonçalves, P. F., Cruz, S. M., Mendes, A. M., 2019. Bi-subspace predictive current control of six-phase PMSM drives based on virtual vectors with optimal amplitude. IET Electric Power Applications 13 (11), 1672-1683. https://doi.org/10.1049/iet-epa.2019.0136 | es_ES |
dc.description.references | Gonzalez-Prieto, A., González-Prieto, I., Duran, M. J., Aciego, J. J., 2022. Dynamic response in multiphase electric drives: Control performance and influencing factors. Machines 10 (10), 866. https://doi.org/10.3390/machines10100866 | es_ES |
dc.description.references | Gonzalez-Prieto, I., Duran, M. J., Aciego, J. J., Martin, C., Barrero, F., 2017. Model predictive control of six-phase induction motor drives using virtual voltage vectors. IEEE Transactions on Industrial Electronics 65 (1), 27-37. https://doi.org/10.1109/TIE.2017.2714126 | es_ES |
dc.description.references | Holtz, J., Stadtfeld, S., 1983. A predictive controller for the stator current vector of AC machines fed from a switched voltage source. In: JIEE IPEC-Tokyo Conf. pp. 1665-1675. | es_ES |
dc.description.references | Kali, Y., Rodas, J., Doval-Gandoy, J., Ayala, M., Gonzalez, O., 2023. Enhanced reaching-law-based discrete-time terminal sliding mode current control of a six-phase induction motor. Machines 11 (1), 107. https://doi.org/10.3390/machines11010107 | es_ES |
dc.description.references | Lim, C. S., Lee, S. S., Levi, E., 2022. Continuous-control-set model predictive current control of asymmetrical six-phase drives considering system nonidealities. IEEE Transactions on Industrial Electronics. https://doi.org/10.1109/TIE.2022.3206703 | es_ES |
dc.description.references | Lim, C.-S., Levi, E., Jones, M., Rahim, N., Hew, W.-P., Aug 2014. A comparative study of synchronous current control schemes based on FCS-MPC and PI-PWM for a two-motor three-phase drive. Industrial Electronics, IEEE Transactions on 61 (8), 3867-3878. https://doi.org/10.1109/TIE.2013.2286573 | es_ES |
dc.description.references | Luo, Y., Liu, C., 2018. A flux constrained predictive control for a six-phase PMSM motor with lower complexity. IEEE Transactions on Industrial Electronics 66 (7), 5081-5093. https://doi.org/10.1109/TIE.2018.2868301 | es_ES |
dc.description.references | Luo, Y., Liu, C., 2019. Model predictive control for a six-phase PMSM motor with a reduced-dimension cost function. IEEE Transactions on Industrial Electronics 67 (2), 969-979. https://doi.org/10.1109/TIE.2019.2901636 | es_ES |
dc.description.references | Mamdouh, M., Abido, M. A., 2022. Simple predictive current control of asymmetrical six-phase induction motor with improved performance. IEEE Transactions on Industrial Electronics. https://doi.org/10.1016/j.aej.2021.09.003 | es_ES |
dc.description.references | Martín, C., Bermúdez, M., Barrero, F., Arahal, M. R., Kestelyn, X., Durán, M. J., 2017. Sensitivity of predictive controllers to parameter variation in five-phase induction motor drives. Control Engineering Practice 68, 23-31. https://doi.org/10.1016/j.conengprac.2017.08.001 | es_ES |
dc.description.references | Mwasilu, F., Kim, E.-K., Rafaq, M. S., Jung, J.-W., 2017. Finite-set model predictive control scheme with an optimal switching voltage vector technique for high-performance IPMSM drive applications. IEEE Transactions on Industrial Informatics 14 (9), 3840-3848. https://doi.org/10.1109/TII.2017.2787639 | es_ES |
dc.description.references | Preindl, M., Bolognani, S., 2013. Model predictive direct speed control with finite control set of PMSM drive systems. IEEE Transactions on Power Electronics 28 (2), 1007-1015. https://doi.org/10.1109/TPEL.2012.2204277 | es_ES |
dc.description.references | Riveros, J. A., Yepes, A. G., Barrero, F., Doval-Gandoy, J., Bogado, B., Lopez, O., Jones, M., Levi, E., 2012. Parameter identification of multiphase induction machines with distributed windings-part 2: Time-domain techniques. IEEE Transactions on Energy Conversion 27 (4), 1067-1077. https://doi.org/10.1109/TEC.2012.2219862 | es_ES |
dc.description.references | Satué, M. G., Arahal, M. R., Ramírez, D. R., 2023. Estimación de intensidades rotóricas en máquinas polifásicas para control predictivo. Revista Iberoamericana de Automática e Informática industrial 20 (1), 25-31. https://doi.org/10.4995/riai.2022.17153 | es_ES |
dc.description.references | Serra, J., Cardoso, A. J. M., 2022. A simplified model predictive control for asymmetrical six-phase induction motors that eliminates the weighting factor. Machines 10 (12), 1189. https://doi.org/10.3390/machines10121189 | es_ES |
dc.description.references | Shawier, A., Habib, A., Mamdouh, M., Abdel-Khalik, A. S., Ahmed, K. H., 2021. Assessment of predictive current control of six-phase induction motor with different winding configurations. IEEE Access. https://doi.org/10.1109/ACCESS.2021.3085083 | es_ES |
dc.description.references | Tawfiq, K. B., Ibrahim, M. N., Sergeant, P., 2022. Power loss analysis of a fivephase drive system using a synchronous reluctance motor and an indirect matrix converter with reduced switching losses. Machines 10 (9), 738. https://doi.org/10.3390/machines10090738 | es_ES |
dc.description.references | Wang, H.,Wu, X., Zheng, X., Yuan, X., 2022. Model predictive current control of nine-phase open-end winding pmsms with an online virtual vector synthesis strategy. IEEE Transactions on Industrial Electronics 70 (3), 2199-2208. https://doi.org/10.1109/TIE.2022.3174241 | es_ES |
dc.description.references | Wei, J., Kong, X., Tao, W., Zhang, Z., Zhou, B., 2022. The torque ripple optimization of open-winding permanent magnet synchronous motor with direct torque control strategy over a wide bus voltage ratio range. IEEE Transactions on Power Electronics 37 (6), 7156-7168. https://doi.org/10.1109/TPEL.2022.3146155 | es_ES |
dc.description.references | Xue, C., Song, W., Feng, X., 2017. Finite control-set model predictive current control of five-phase permanent-magnet synchronous machine based on virtual voltage vectors. IET Electric Power Applications 11 (5), 836-846. https://doi.org/10.1049/iet-epa.2016.0529 | es_ES |
dc.relation.references | 10.1109/JESTPE.2022.3172138 | es_ES |
dc.relation.references | 10.4995/riai.2018.9771 | es_ES |
dc.relation.references | 10.3390/en14175222 | es_ES |
dc.relation.references | 10.3390/en15249412 | es_ES |
dc.relation.references | 10.1049/iet-epa.2019.0667 | es_ES |
dc.relation.references | 10.1109/MIE.2022.3169291 | es_ES |
dc.relation.references | 10.1109/ACCESS.2021.3073020 | es_ES |
dc.relation.references | 10.4995/riai.2018.9837 | es_ES |
dc.relation.references | 10.1109/TPEL.2019.2907194 | es_ES |
dc.relation.references | 10.1049/iet-epa.2019.0136 | es_ES |
dc.relation.references | 10.3390/machines10100866 | es_ES |
dc.relation.references | 10.1109/TIE.2017.2714126 | es_ES |
dc.relation.references | 10.3390/machines11010107 | es_ES |
dc.relation.references | 10.1109/TIE.2022.3206703 | es_ES |
dc.relation.references | 10.1109/TIE.2013.2286573 | es_ES |
dc.relation.references | 10.1109/TIE.2018.2868301 | es_ES |
dc.relation.references | 10.1109/TIE.2019.2901636 | es_ES |
dc.relation.references | 10.1109/TIE.2022.3217588 | es_ES |
dc.relation.references | 10.1016/j.conengprac.2017.08.001 | es_ES |
dc.relation.references | 10.1109/TII.2017.2787639 | es_ES |
dc.relation.references | 10.1109/TPEL.2012.2204277 | es_ES |
dc.relation.references | 10.1109/TEC.2012.2219862 | es_ES |
dc.relation.references | 10.4995/riai.2022.17153 | es_ES |
dc.relation.references | 10.3390/machines10121189 | es_ES |
dc.relation.references | 10.1109/ACCESS.2021.3085083 | es_ES |
dc.relation.references | 10.3390/machines10090738 | es_ES |
dc.relation.references | 10.1109/TIE.2022.3174241 | es_ES |
dc.relation.references | 10.1109/TPEL.2022.3146155 | es_ES |
dc.relation.references | 10.1049/iet-epa.2016.0529 | es_ES |