Mostrar el registro sencillo del ítem
dc.contributor.author | Chávez-Gudiño, Mariana A. | es_ES |
dc.contributor.author | Concha-Sánchez, Antonio | es_ES |
dc.contributor.author | Maciel-Barboza, Fermín M. | es_ES |
dc.contributor.author | Gadi, Suresh K. | es_ES |
dc.contributor.author | Thenozhi, Suresh | es_ES |
dc.contributor.author | Jiménez Betancourt, Ramón | es_ES |
dc.date.accessioned | 2023-11-07T13:19:18Z | |
dc.date.available | 2023-11-07T13:19:18Z | |
dc.date.issued | 2023-09-29 | |
dc.identifier.issn | 1697-7912 | |
dc.identifier.uri | http://hdl.handle.net/10251/199439 | |
dc.description.abstract | [EN] The mechanical and electronic design, kinematic and dynamic modeling, programming, and control of a low-cost 2-DOF helicopter are presented. Although there are commercial platforms for a 2-DOF helicopter, their cost is high, and therefore they are not easily accessible. This situation may be avoided by using a low-cost platform based on open-source software and a low-cost data acquisition system. To this end, this article presents a 2-DOF helicopter whose pitch and yaw movements are actuated by DC motors, and they are measured by encoders. For the interpretation, processing, and monitoring of the movements, a computer with Matlab Simulink is used. Data acquisition of the encoders and the generation of the control signals of the helicopter are carried out by an Arduino Mega board, which communicates with Simulink through the open-source Arduino IO Toolbox. A procedure to estimate the parameters of the dynamic model of the helicopter is also proposed, and they are used for designing PI-D controllers that stabilize the helicopter in the desired position. The conditions on the gains of the controllers that guarantee the stability of the system in closed loop are presented. In addition, the performance of the proposed platform is verified through real-time experiments, which are shown in a video. | es_ES |
dc.description.abstract | [ES] Se presenta el diseño mecánico y electrónico, modelado cinemático y dinámico, programación y control de un helicóptero de 2 GDL y de bajo costo. Si bien existen plataformas comerciales de helicópteros de 2 GDL, su costo es elevado y por ende son poco accesibles. Esta situación puede evitarse mediante el uso de una plataforma basada en software de código abierto y en un sistema de adquisición de datos de bajo costo. Para este fin, en este artículo se presenta un helicóptero de 2 GDL cuyos movimientos de cabeceo y guiñada son accionados por motores de corriente directa, y son medidos por encoders ópticos. Para la interpretación, procesamiento y monitoreo de los movimientos del helicóptero se emplea una computadora con Matlab Simulink. Para la adquisición de datos de los encoders y la generación de las señales de control del helicóptero se utiliza una tarjeta Arduino Mega, la cual se comunica con Matlab-Simulink por medio del Toolbox Arduino IO de código abierto. También, se propone un procedimiento para estimar los parámetros del modelo dinámico del helicóptero, y se utilizan para diseñar controladores PI-D que estabilizan el helicóptero en la posición deseada. Se presentan las condiciones en las ganancias de los controladores que garantizan la estabilidad del sistema en lazo cerrado. Además, se verifica el desempeño de la plataforma propuesta mediante resultados experimentales, los cuales se visualizan en un vídeo. | es_ES |
dc.description.sponsorship | Los autores agradecen al Consejo Nacional de Ciencia y Tecnología (CONACYT) y al Programa para el Desarrollo Profesional Docente (PRODEP-SEP) de México por el apoyo para la realización de este trabajo. | es_ES |
dc.language | Español | es_ES |
dc.publisher | Universitat Politècnica de València | es_ES |
dc.relation.ispartof | Revista Iberoamericana de Automática e Informática industrial | es_ES |
dc.rights | Reconocimiento - No comercial - Compartir igual (by-nc-sa) | es_ES |
dc.subject | 2-DOF helicopter | es_ES |
dc.subject | Real-time control | es_ES |
dc.subject | Parameter estimation | es_ES |
dc.subject | Open-source software | es_ES |
dc.subject | Low-cost tecnology | es_ES |
dc.subject | Control en tiempo real | es_ES |
dc.subject | Estimación de parámetros | es_ES |
dc.subject | Software de código abierto | es_ES |
dc.subject | Tecnología de bajo costo | es_ES |
dc.subject | Helicóptero de 2 GDL | es_ES |
dc.title | Desarrollo y control de un helicóptero de laboratorio de 2 GDL y de bajo costo | es_ES |
dc.title.alternative | Development and control of a low cost 2 DOF laboratory helicopter | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.4995/riai.2023.18942 | |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Chávez-Gudiño, MA.; Concha-Sánchez, A.; Maciel-Barboza, FM.; Gadi, SK.; Thenozhi, S.; Jiménez Betancourt, R. (2023). Desarrollo y control de un helicóptero de laboratorio de 2 GDL y de bajo costo. Revista Iberoamericana de Automática e Informática industrial. 20(4):366-378. https://doi.org/10.4995/riai.2023.18942 | es_ES |
dc.description.accrualMethod | OJS | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/riai.2023.18942 | es_ES |
dc.description.upvformatpinicio | 366 | es_ES |
dc.description.upvformatpfin | 378 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 20 | es_ES |
dc.description.issue | 4 | es_ES |
dc.identifier.eissn | 1697-7920 | |
dc.relation.pasarela | OJS\18942 | es_ES |
dc.contributor.funder | Consejo Nacional de Humanidades, Ciencias y Tecnologías, México | es_ES |
dc.description.references | Ahmed, Q., Bhatti, A., Iqbal, S., Kazmi, I., 2010. 2-sliding mode based robust control for 2-dof helicopter. En: 2010 11th International Workshop on Variable Structure Systems (VSS). IEEE, pp. 481-486. https://doi.org/10.1109/VSS.2010.5544531 | es_ES |
dc.description.references | Castellanos, J. E. R., Ballesteros, J. E. C., 2019. Implementation of a direct fuzzy controller applied to a helicopter with one degree of freedom. IEEE Latin America Transactions 17 (11), 1808-1814. https://doi.org/10.1109/TLA.2019.8986418 | es_ES |
dc.description.references | Espinosa, J. J., 2003. Control lineal de sistemas multivariables. Corporacion Universitaria de Ibagué. | es_ES |
dc.description.references | Evangelista, A. P. F., de Oliveira Serra, G. L., 2022. Type-2 fuzzy instrumental variable algorithm for evolving neural-fuzzy modeling of nonlinear dynamic systems in noisy environment. Engineering Applications of Artificial Intelligence 109, 104620. https://doi.org/10.1016/j.engappai.2021.104620 | es_ES |
dc.description.references | Flores-Calero, M., Torres-Torriti, M., Retamales-Ortega, F., Rosas-Díaz, F., 2020. Plataforma de presencia virtual de bajo costo para personas con discapacidades motoras severas. Revista Iberoamericana de Automática e Informática industrial 17 (2), 215-228. https://doi.org/10.4995/riai.2019.10634 | es_ES |
dc.description.references | Gadi, S. K., Febrero 2023a. Resultados experimentales del control de movimiento del helicóptero de 2 gdl. URL: https://www.youtube.com/watch?v=Cpb9p4lEJPU | es_ES |
dc.description.references | Gadi, S. K., Febrero 2023b. Robustez del control de movimiento del helicóptero ante perturbaciones. URL: https://www.youtube.com/watch?v=Nfodye9RL3k | es_ES |
dc.description.references | Gadi, S. K., Febrero 2023c. Software de control del helicóptero de 2 gdl. URL: https://github.com/skgadi/Projects/tree/master/2023-helicopter/software | es_ES |
dc.description.references | Ghersin, A. S., Giribet, J. I., Luiso, J., Tournour, A., 2021. Control robusto infinito para la velocidad de desplazamiento de un uav en base a estimación de flujo óptico. Revista Iberoamericana de Automática e Informática Industrial 18 (3), 242-253. https://doi.org/10.4995/riai.2021.14370 | es_ES |
dc.description.references | Giampiero Campa, 2023a. Device Drivers. URL: https://es.mathworks.com/matlabcentral/fileexchange/39354-device-drivers | es_ES |
dc.description.references | Giampiero Campa, 2023b. Legacy MATLAB and Simulink Support for Arduino - File Exchange - MATLAB Central. URL: https://www.mathworks.com/matlabcentral/fileexchange/32374-legacy-matlab-and-simulink-support-for-arduino | es_ES |
dc.description.references | Golnaraghi, F., Kuo, B. C., 2017. Automatic control systems. McGraw-Hill Education. | es_ES |
dc.description.references | Hawary, A. F., Hoe, Y. H., Bakar, E. A., Noor, N. R. M., Othman, W. A. F. W., 2019. Parameter estimation of brushless DC motor using experimental methods. En: Symposium on Manufacturing and Industrial Engineering. | es_ES |
dc.description.references | He, M., He, J., Scherer, S., 2021. Model-based real-time robust controller for a small helicopter. Mechanical Systems and Signal Processing 146, 107022. https://doi.org/10.1016/j.ymssp.2020.107022 | es_ES |
dc.description.references | Inman, D. J., Singh, R. C., 1994. Engineering vibration. Vol. 3. Prentice Hall Englewood Cliffs, NJ. | es_ES |
dc.description.references | Khakshour, A. J., Khanesar, M. A., 2016. Model reference fractional order control using type-2 fuzzy neural networks structure: Implementation on a 2-dof helicopter. Neurocomputing 193, 268-279. https://doi.org/10.1016/j.neucom.2016.02.014 | es_ES |
dc.description.references | Kim, B. M., Yoo, S. J., 2021. Approximation-based quantized state feedback tracking of uncertain input-saturated mimo nonlinear systems with application to 2-dof helicopter. Mathematics 9 (9), 1062. https://doi.org/10.3390/math9091062 | es_ES |
dc.description.references | KJ, Å., Hagglund, T., 1995. PID controllers: theory, design and tuning. Instrument Society of America, Research Triangle Park, NC. | es_ES |
dc.description.references | Kumar, E. V., Raaja, G. S., Jerome, J., 2016. Adaptive pso for optimal lqr tracking control of 2 dof laboratory helicopter. Applied Soft Computing 41, 77-90. https://doi.org/10.1016/j.asoc.2015.12.023 | es_ES |
dc.description.references | Luo, B., Wu, H.-N., Huang, T., 2017. Optimal output regulation for model-free quanser helicopter with multistep q-learning. IEEE Transactions on Industrial Electronics 65 (6), 4953-4961. https://doi.org/10.1109/TIE.2017.2772162 | es_ES |
dc.description.references | Madridano, A., Campos, S., Al-Kaff, A., García, F., Martín, D., Escalera, A., 2020. Vehículo aéreo no tripulado para vigilancia y monitorización de incendios. Revista Iberoamericana de Automática e Informática industrial 17 (3). https://doi.org/10.4995/riai.2020.11806 | es_ES |
dc.description.references | Murray, R. S., 1967. Teoría y problemas de mecánica teórica. Mcgraw-Hill. | es_ES |
dc.description.references | Neto, G. G., dos Santos Barbosa, F., Angelico, B. A., 2016. 2-dof helicopter controlling by pole-placements. En: 2016 12th IEEE International Conference on Industry Applications (INDUSCON). IEEE, pp. 1-5. https://doi.org/10.1109/INDUSCON.2016.7874535 | es_ES |
dc.description.references | Ogata, K., 2010. Ingeniería de control moderna, 5th Edición. Pearson Educación, Madrid. | es_ES |
dc.description.references | O'Reilly, O. M., 2008. Intermediate dynamics for engineers: a unified treatment of Newton-Euler and Lagrangian mechanics. Cambridge University Press Cambridge. https://doi.org/10.1017/CBO9780511791352 | es_ES |
dc.description.references | Osmic, N., Velagic, J., Konjicija, S., Galijasevic, A., 2010. Genetic algorithm based identification of a nonlinear 2dof helicopter model. En: 18th Mediterranean Conference on Control and Automation, MED'10. IEEE, pp. 333-338. https://doi.org/10.1109/MED.2010.5547690 | es_ES |
dc.description.references | Özbek, N. S., Önkol, M., Efe, M. Ö., 2016. Feedback control strategies for quadrotor-type aerial robots: a survey. Transactions of the Institute of Measurement and Control 38 (5), 529-554. https://doi.org/10.1177/0142331215608427 | es_ES |
dc.description.references | Öztürk, M., Özkol, I., 2021. Comparison of self-tuned neuro-fuzzy controllers on 2 dof helicopter: an application. SN Applied Sciences 3 (1), 1-14. https://doi.org/10.1007/s42452-020-03984-5 | es_ES |
dc.description.references | Patel, K., Mehta, A., 2021. Fixed time steps discrete-time sliding mode consensus protocols for two degree of freedom helicopter systems. Transactions of the Institute of Measurement and Control 43 (15), 3322-3334. https://doi.org/10.1177/01423312211004778 | es_ES |
dc.description.references | Reyhanoglu, M., Jafari, M., Rehan, M., 2022. Simple learning-based robust trajectory tracking control of a 2-dof helicopter system. Electronics 11 (13), 2075. https://doi.org/10.3390/electronics11132075 | es_ES |
dc.description.references | Rico-Azagra, J., Gil-Martínez, M., Rico, R., Najera, S., Elvira, C., 2021. Benchmark de control de la orientación de un multirrotor en una estructura de rotación con tres grados de libertad. Revista Iberoamericana de Automática e Informatica industrial 18 (3), 265-276. https://doi.org/10.4995/riai.2021.14356 | es_ES |
dc.description.references | Rodríguez-Cortés, H., 2022. Aportaciones al control de vehículos aéreos no tripulados en México. Revista Iberoamericana de Automática e Informática 'industrial 19 (4), 430-441. https://doi.org/10.4995/riai.2022.16870 | es_ES |
dc.description.references | Sadala, S., Patre, B., 2018. A new continuous sliding mode control approach with actuator saturation for control of 2-dof helicopter system. ISA transactions 74, 165-174. https://doi.org/10.1016/j.isatra.2018.01.027 | es_ES |
dc.description.references | Sanchez-Fontes, E., Avila Vilchis, J., Vilchis-Gonzalez, A., Saldivar, B., Jacinto-Villegas, J., Martínez-Mendez, R., 2020. Nuevo vehículo aéreo autónomo estable por construcción: Configuración y modelo dinámico. Revista Iberoamericana de Automática e Informática industrial 17 (3). https://doi.org/10.4995/riai.2020.11603 | es_ES |
dc.description.references | Schlanbusch, S. M., Zhou, J., 2020. Adaptive backstepping control of a 2-dof helicopter system with uniform quantized inputs. En: IECON 2020 The 46th Annual Conference of the IEEE Industrial Electronics Society. IEEE, pp. 88-94. https://doi.org/10.1109/IECON43393.2020.9254497 | es_ES |
dc.description.references | Sharma, R., Pfeiffer, C. F., 2017. Comparison of control strategies for a 2 dof helicopter. En: Proceedings of the 58th Conference on Simulation and Modelling (SIMS 58). https://doi.org/10.3384/ecp17138271 | es_ES |
dc.description.references | Shraim, H., Awada, A., Youness, R., 2018. A survey on quadrotors: Configurations, modeling and identification, control, collision avoidance, fault diagnosis and tolerant control. IEEE Aerospace and Electronic Systems Magazine 33 (7), 14-33. https://doi.org/10.1109/MAES.2018.160246 | es_ES |
dc.description.references | Solaque Guzmán, L., Cristancho Cardozo, C. A., Gil C 'árdenas, C. A., 2014. 'Diseño e implementación de una plataforma experimental de dos grados de libertad controlada por dos écnicas: Pid y lógica difusa. Ciencia e Ingeniería Neogranadina 24 (1), 99-1. https://doi.org/10.18359/rcin.10 | es_ES |
dc.description.references | Spong, M. W., Hutchinson, S., Vidyasagar, M., et al., 2006. Robot modeling and control. Vol. 3. Wiley New York. | es_ES |
dc.description.references | Wei-hong, X., Li-jia, C., Chun-lai, Z., 2021. Review of aerial manipulator and its control. International Journal of Robotics and Control Systems 1 (3), 308-325. https://doi.org/10.31763/ijrcs.v1i3.363 | es_ES |
dc.description.references | Xia, C.-l., 2012. Permanent magnet brushless DC motor drives and controls. John Wiley & Sons. https://doi.org/10.1002/9781118188347 | es_ES |
dc.description.references | Xilun, D., Pin, G., Kun, X., Yushu, Y., 2019. A review of aerial manipulation of small-scale rotorcraft unmanned robotic systems. Chinese Journal of Aeronautics 32 (1), 200-214. https://doi.org/10.1016/j.cja.2018.05.012 | es_ES |
dc.description.references | Xin, Y., Qin, Z.-C., Sun, J.-Q., 2019. Input-output tracking control of a 2-dof laboratory helicopter with improved algebraic differential estimation. Mechanical Systems and Signal Processing 116, 843-857. https://doi.org/10.1016/j.ymssp.2018.07.027 | es_ES |
dc.description.references | Zhao, Z., Zhang, J., Liu, Z., Mu, C., Hong, K.-S., 2022. Adaptive neural network control of an uncertain 2-dof helicopter with unknown backlash-like hysteresis and output constraints. IEEE Transactions on Neural Networks and Learning Systems. https://doi.org/10.1109/TNNLS.2022.3163572 | es_ES |
dc.description.references | Zuñiga, M. A., Ramírez, L. A., Romero, G., Alcorta-García, E., Arceo, A., 2021. Passive fault-tolerant control of a 2-dof robotic helicopter. Information 12 (11), 445. https://doi.org/10.3390/info12110445 | es_ES |
dc.relation.references | 10.1109/VSS.2010.5544531 | es_ES |
dc.relation.references | 10.1109/TLA.2019.8986418 | es_ES |
dc.relation.references | 10.1016/j.engappai.2021.104620 | es_ES |
dc.relation.references | 10.4995/riai.2019.10634 | es_ES |
dc.relation.references | 10.4995/riai.2021.14370 | es_ES |
dc.relation.references | 10.1016/j.ymssp.2020.107022 | es_ES |
dc.relation.references | 10.1016/j.neucom.2016.02.014 | es_ES |
dc.relation.references | 10.3390/math9091062 | es_ES |
dc.relation.references | 10.1016/j.asoc.2015.12.023 | es_ES |
dc.relation.references | 10.1109/TIE.2017.2772162 | es_ES |
dc.relation.references | 10.4995/riai.2020.11806 | es_ES |
dc.relation.references | 10.1109/INDUSCON.2016.7874535 | es_ES |
dc.relation.references | 10.1017/CBO9780511791352 | es_ES |
dc.relation.references | 10.1109/MED.2010.5547690 | es_ES |
dc.relation.references | 10.1177/0142331215608427 | es_ES |
dc.relation.references | 10.1007/s42452-020-03984-5 | es_ES |
dc.relation.references | 10.1177/01423312211004778 | es_ES |
dc.relation.references | 10.3390/electronics11132075 | es_ES |
dc.relation.references | 10.4995/riai.2021.14356 | es_ES |
dc.relation.references | 10.4995/riai.2022.16870 | es_ES |
dc.relation.references | 10.1016/j.isatra.2018.01.027 | es_ES |
dc.relation.references | 10.4995/riai.2020.11603 | es_ES |
dc.relation.references | 10.1109/IECON43393.2020.9254497 | es_ES |
dc.relation.references | 10.3384/ecp17138271 | es_ES |
dc.relation.references | 10.1109/MAES.2018.160246 | es_ES |
dc.relation.references | 10.18359/rcin.10 | es_ES |
dc.relation.references | 10.31763/ijrcs.v1i3.363 | es_ES |
dc.relation.references | 10.1002/9781118188347 | es_ES |
dc.relation.references | 10.1016/j.cja.2018.05.012 | es_ES |
dc.relation.references | 10.1016/j.ymssp.2018.07.027 | es_ES |
dc.relation.references | 10.1109/TNNLS.2022.3163572 | es_ES |
dc.relation.references | 10.3390/info12110445 | es_ES |