Riunet Móvil

Home Versión de escritorio

Ley de control óptima de un AUV funcionando con un único motor

Mostrar el registro sencillo del ítem

dc.contributor.author Cerrada Collado, Cristina es_ES
dc.contributor.author Chaos García, Dictino es_ES
dc.contributor.author Moreno-Salinas, David es_ES
dc.contributor.author Aranda Almansa, Joaquín es_ES
dc.date.accessioned 2023-11-07T13:45:39Z
dc.date.available 2023-11-07T13:45:39Z
dc.date.issued 2023-09-29
dc.identifier.issn 1697-7912
dc.identifier.uri http://hdl.handle.net/10251/199440
dc.description.abstract [EN] The present paper presents a optimization problem of a control law to minimize the integral square error produced by driving an AUV (Autonomous Underwater Vehicle) using a single thruster from a start point to a desired recovery area. In addition, two possible control solutions are studied and their implementation in the real vehicle. Genetic algorithms are employed to optimize the control law and two solutions are proposed. In the first solution, a control law sampled as a function of time is optimized. And in the second solutions, an optimal control action as a function of the orientation of the vehicle from a control law represented by a Fourier series is used. The correct functioning of the proposed solutions is demonstrated through a series of simulations that consider different conditions and possible situations. es_ES
dc.description.abstract [ES] En este artículo se plantea el problema de optimización de una ley de control para minimizar el error cuadrático integral al conducir un AUV (Autonomous Underwater Vehicle, vehículo autónomo submarino) actuado con un único motor desde un punto de partida hasta una zona de recuperación deseada. Así mismo se muestran dos posibles soluciones de control y se discute su implementación en el vehículo. Para la optimización de la ley de control se utilizarán los algoritmos genéticos y se proponen dos soluciones: En la primera se optimiza la ley de control muestreada en función del tiempo. La segunda, por su parte, emplea una acción de control óptima en función de la orientación del vehículo a partir de una ley de control representada mediante una serie de Fourier. El correcto funcionamiento de las soluciones propuestas se demuestra mediante una serie de simulaciones que consideran distintas condiciones y situaciones posibles. es_ES
dc.description.sponsorship Este artículo ha sido financiado por el Ministerio de Ciencia e Innovación a través del proyecto con referencia PID2020-112502RB-C44. es_ES
dc.language Español es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Revista Iberoamericana de Automática e Informática industrial es_ES
dc.rights Reconocimiento - No comercial - Compartir igual (by-nc-sa) es_ES
dc.subject Automatic control of marine and underwater systems es_ES
dc.subject Optimal control es_ES
dc.subject Nonlinear control es_ES
dc.subject Fault-tolerant control es_ES
dc.subject Control no lineal es_ES
dc.subject Control automático de sistemas marinos y subacuáticos es_ES
dc.subject Acomodación de fallos en sistemas de control es_ES
dc.subject Control óptimo es_ES
dc.title Ley de control óptima de un AUV funcionando con un único motor es_ES
dc.title.alternative Optimal control law of an AUV using a single thruster es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/riai.2023.19034
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-112502RB-C44/ES/NAUTILUS: MODELADO E IDENTIFICACION DE AUVS. ENFOQUES TEORICOS Y PRACTICOS./ es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Cerrada Collado, C.; Chaos García, D.; Moreno-Salinas, D.; Aranda Almansa, J. (2023). Ley de control óptima de un AUV funcionando con un único motor. Revista Iberoamericana de Automática e Informática industrial. 20(4):389-400. https://doi.org/10.4995/riai.2023.19034 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/riai.2023.19034 es_ES
dc.description.upvformatpinicio 389 es_ES
dc.description.upvformatpfin 400 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 20 es_ES
dc.description.issue 4 es_ES
dc.identifier.eissn 1697-7920
dc.relation.pasarela OJS\19034 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Abreu, P. C., Botelho, J., Gois, P., Pascoal, A., Ribeiro, J., Ribeiro, M., Rufino, M., Sebastiao, L., Silva, H., 2016. The MEDUSA class of autonomous marine vehicles and their role in EU projects. In: OCEANS 2016 - Shanghai. pp. 1-10. https://doi.org/10.1109/OCEANSAP.2016.7485620 es_ES
dc.description.references Aguiar, A., Pascoal, A., 2001. Regulation of a nonholonomic autonomous underwater vehicle with parametric modeling uncertainty using Lyapunov functions. In: Decision and Control, 2001. Proceedings of the 40th IEEE Conference on. Vol. 5. pp. 4178-4183. https://doi.org/10.1109/.2001.980841 es_ES
dc.description.references Ahmadzadeh, S. R., Kormushev, P., Caldwell, D. G., 2014a. Multi-objective reinforcement learning for AUV thruster failure recovery. In: 2014 IEEE Symposium on Adaptive Dynamic Programming and Reinforcement Learning (ADPRL). pp. 1-8. https://doi.org/10.1109/ADPRL.2014.7010621 es_ES
dc.description.references Ahmadzadeh, S. R., Leonetti, M., Carrera, A., Carreras, M., Kormushev, P., Caldwell, D. G., 2014b. Online discovery of AUV control policies to overcome thruster failures. In: 2014 IEEE International Conference on Robotics and Automation (ICRA). pp. 6522-6528. https://doi.org/10.1109/ICRA.2014.6907821 es_ES
dc.description.references Alvarez, C., Saltarén, R., Aracil, R., García, C., 2009. Concepcion, Desarrollo y Avances en el Control de Navegacion de Robots Submarinos Paralelos: el Robot REMO-I. Revista Iberoamericana de Automatica e Informática industrial 6 (3), 92-100. https://doi.org/10.1016/S1697-7912(09)70268-7 es_ES
dc.description.references Amin, A. A., Hasan, K. M., 2019. A review of Fault Tolerant Control Systems: Advancements and applications. Measurement 143, 58-68. https://doi.org/10.1016/j.measurement.2019.04.083 es_ES
dc.description.references Antonelli, G., 2003. A Survey of Fault Detection/Tolerance Strategies for AUVs and ROVs. In: Caccavale, F., Villani, L. (Eds.), Fault Diagnosis and Fault Tolerance for Mechatronic Systems:Recent Advances. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 109-127. https://doi.org/10.1007/3-540-45737-2 es_ES
dc.description.references Baldini, A., Ciabattoni, L., Felicetti, R., Ferracuti, F., Freddi, A., Monteriu, A., 2018. Dynamic surface fault tolerant control for underwater remotely operated vehicles. ISA Transactions 78, 10-20. https://doi.org/10.1016/j.isatra.2018.02.021 es_ES
dc.description.references Boyd, S., Vandenberghe, L., 2004. Convex Optimization. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9780511804441 es_ES
dc.description.references Cerrada, C., Chaos, D., Moreno-Salinas, D., Aranda, J., 2022. Optimización ley de control para un AUV funcionando con un único motor. In: XLIII Jornadas de Automática. pp. 1-8. https://doi.org/10.17979/spudc.9788497498418.0001 es_ES
dc.description.references Chaos, D., Moreno-Salinas, D., Aranda, J., 2022. Fault-Tolerant Control for AUVs Using a Single Thruster. IEEE Access 10, 22123-22139. https://doi.org/10.1109/ACCESS.2022.3152190 es_ES
dc.description.references Corradini, M. L., Monteriu, A., Orlando, G., 2011. An Actuator Failure Tolerant Control Scheme for an Underwater Remotely Operated Vehicle. IEEE Transactions on Control Systems Technology 19 (5), 1036-1046. https://doi.org/10.1109/TCST.2010.2060199 es_ES
dc.description.references Crasta, N., Moreno-Salinas, D., Pascoal, A. M., Aranda, J., 2018. Multiple autonomous surface vehicle motion planning for cooperative range-based underwater target localization. Annual Reviews in Control 46, 326-342. https://doi.org/10.1016/j.arcontrol.2018.10.004 es_ES
dc.description.references Ding, X., Zhu, D., 2020. Research on Static Fault-tolerant Control Method of UUV Based on MPC in Two Dimension. In: 2020 Chinese Control And Decision Conference (CCDC). pp. 5333-5338. https://doi.org/10.1109/CCDC49329.2020.9164413 es_ES
dc.description.references Fossen, T. I., 2002. Marine Control Systems: Guidance, Navigation and Control of Ships, Rigs and Underwater Vehicles. Marine Cybernetics AS, Trondheim. es_ES
dc.description.references Ghabcheloo, R., Aguiar, A. P., Pascoal, A., Silvestre, C., Kaminer, I., Hespanha, J., 2009. Coordinated Path-Following in the Presence of Communication Losses and Time Delays. SIAM Journal on Control and Optimization 48 (1), 234-265. https://doi.org/10.1137/060678993 es_ES
dc.description.references Hao, L.-Y., Zhang, H., Li, H., Li, T.-S., 2020. Sliding mode fault-tolerant control for unmanned marine vehicles with signal quantization and time-delay. Ocean Engineering 215, 107882. https://doi.org/10.1016/j.oceaneng.2020.107882 es_ES
dc.description.references Hao, L.-Y., Zhang, H., Li, T.-S., Lin, B., Chen, C. L. P., 2021a. Fault Tolerant Control for Dynamic Positioning of Unmanned Marine Vehicles Based on T-S Fuzzy Model With Unknown Membership Functions. IEEE Transactions on Vehicular Technology 70 (1), 146-157. https://doi.org/10.1109/TVT.2021.3050044 es_ES
dc.description.references Hao, L.-Y., Zhang, Y.-Q., Li, H., 2021b. Fault-tolerant control via integral sliding mode output feedback for unmanned marine vehicles. Applied Mathematics and Computation 401, 126078. https://doi.org/10.1016/j.amc.2021.126078 es_ES
dc.description.references Hou, C., Li, X., Wang, H., Zhai, P., Lu, H., 2022. Fuzzy linear extended states observer-based iteration learning fault-tolerant control for autonomous underwater vehicle trajectory-tracking system. IET Control Theory & Applications, 1-14. https://doi.org/10.1049/cth2.12288 es_ES
dc.description.references Kramer, O., 2017. Genetic Algorithm Essentials. Springer International Publishing AG, part of Springer Nature, Cham. es_ES
dc.description.references Leonetti, M., Ahmadzadeh, S. R., Kormushev, P., 2013. On-line learning to recover from thruster failures on Autonomous Underwater Vehicles. In: 2013 OCEANS - San Diego. pp. 1-6. DOI: 10.23919/OCEANS.2013.6741265 es_ES
dc.description.references Li, H., Pan, J., Zhang, X., Yu, J., 2021. Integral-based event-triggered fault estimation and impulsive fault-tolerant control for networked control systems applied to underwater vehicles. Neurocomputing 442, 36-47. https://doi.org/10.1016/j.neucom.2021.02.035 es_ES
dc.description.references Li, H., Xu, J., Yu, J., 2022. Discrete Event-Triggered Fault-Tolerant Control of Underwater Vehicles Based on Takagi-Sugeno Fuzzy Model. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 1-11. https://doi.org/10.1109/TSMC.2022.3205782 es_ES
dc.description.references Liu, F., Tang, H., Qin, Y., Duan, C., Luo, J., Pu, H., 2022. Review on fault diagnosis of unmanned underwater vehicles. Ocean Engineering 243, 110290. https://doi.org/10.1016/j.oceaneng.2021.110290 es_ES
dc.description.references Lv, T., Zhou, J., Wang, Y., Gong, W., Zhang, M., 2020. Sliding mode based fault tolerant control for autonomous underwater vehicle. Ocean Engineering 216, 107855. https://doi.org/10.1016/j.oceaneng.2020.107855 es_ES
dc.description.references Mondal, K., Banerjee, T., 2019. Autonomous Underwater Vehicles: Recent Developments and Future Prospects. International Journal for Research in Applied Science and Engineering Technology 7, 215-222. https://doi.org/10.22214/ijraset.2019.11036 es_ES
dc.description.references Moreno-Salinas, D., Pascoal, A., Aranda, J., 2016. Optimal Sensor Placement for Acoustic Underwater Target Positioning With Range-Only Measurements. IEEE Journal of Oceanic Engineering 41 (3), 620-643. https://doi.org/10.1109/JOE.2015.2494918 es_ES
dc.description.references Ozturk, A., 2021. Lessons Learned from Robotics and AI in a Liability Context: A Sustainability Perspective. In: Carpenter, A., Johansson, T. M., Skinner, J. A. (Eds.), Sustainability in the Maritime Domain: Towards Ocean Governance and Beyond. Springer International Publishing, Cham, pp. 315-335. https://doi.org/10.1007/978-3-030-69325-1_16 es_ES
dc.description.references Pearson, A. R., Sutton, R., Burns, R. S., Robinson, P., 2001. A Fuzzy Fault Tolerant Control Scheme for an Autonomous Underwater Vehicle. IFAC Proceedings Volumes 34 (7), 425-430. https://doi.org/10.1016/S1474-6670(17)35119-4 es_ES
dc.description.references Podder, T. K., Sarkar, N., 2001. Fault-tolerant control of an autonomous underwater vehicle under thruster redundancy. Robotics and Autonomous Systems 34 (1), 39-52. https://doi.org/10.1016/S0921-8890(00)00100-7 es_ES
dc.description.references Pugi, L., Allotta, B., Pagliai, M., 2018. Redundant and reconfigurable propulsion systems to improve motion capability of underwater vehicles. Ocean Engineering 148, 376-385. https://doi.org/10.1016/j.oceaneng.2017.11.039 es_ES
dc.description.references Puig, V., Quevedo, J., Escobet, T., Morcego, B., Ocampo, C., 2004a. Control Tolerante a Fallos (Parte I): Fundamentos y Diagnostico de Fallos. Revista Iberoamericana de Automática e Informática industrial 1 (1), 15-31. es_ES
dc.description.references Puig, V., Quevedo, J., Escobet, T., Morcego, B., Ocampo, C., 2004b. Control Tolerante a Fallos (Parte II): Mecanismos de Tolerancia y Sistema Supervisor. Revista Iberoamericana de Automática e Informática Industrial 1 (2), 5-21. es_ES
dc.description.references Rauber, J. G., Santos, C. H. F. d., Chiella, A. C. B., Motta, L. R. H., 2012. A strategy for thruster fault-tolerant control applied to an AUV. In: 2012 17th International Conference on Methods Models in Automation Robotics (MMAR). pp. 184-189. https://doi.org/10.1109/MMAR.2012.6347891 es_ES
dc.description.references Sarkar, N., Podder, T. K., Antonelli, G., 2002. Fault-accommodating thruster force allocation of an AUV considering thruster redundancy and saturation. IEEE Transactions on Robotics and Automation 18 (2), 223-233. https://doi.org/10.1109/TRA.2002.999650 es_ES
dc.description.references SNAME, 1950. Nomenclature for Treating the Motion of a Sumerged Body Through a Fluid. Tech. rep., The Society of naval Architects and Marine Engineers, series: Technical and research bulletin Nº 3-47. es_ES
dc.description.references Tian, Q.,Wang, T., Liu, B., Ran, G., 2022. Thruster Fault Diagnostics and Fault Tolerant Control for Autonomous Underwater Vehicle with Ocean Currents. Machines 10 (7), 582. https://doi.org/10.3390/machines10070582 es_ES
dc.description.references Tolstov, G. P., Silverman, R. A., 1976. Fourier Series. Dover Publications, Inc., New York. es_ES
dc.description.references van Laarhoven, P. J. M., Aarts, E. H. L., 1987. Simulated annealing. Springer Netherlands, Dordrecht, pp. 7-15. https://doi.org/10.1007/978-94-015-7744-1 es_ES
dc.description.references Wang, Y., Jiang, B., Wu, Z., Xie, S., Peng, Y., 2020. Adaptive Sliding Mode Fault-Tolerant Fuzzy Tracking Control With Application to Unmanned Marine Vehicles. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 1-10. https://doi.org/10.1109/TSMC.2020.2964808 es_ES
dc.description.references Yang, Y., Xiao, Y., Li, T., 2021. A Survey of Autonomous Underwater Vehicle Formation: Performance, Formation Control, and Communication Capability. IEEE Communications Surveys & Tutorials 23 (2), 815-841. https://doi.org/10.1109/COMST.2021.3059998 es_ES
dc.description.references Zhang, H., Zhu, D., 2021. Quantum-Behaved Particle Swarm Optimization Fault-Tolerant Control for Human Occupied Vehicle. In: Liu, X.-J., Nie, Z., Yu, J., Xie, F., Song, R. (Eds.), Intelligent Robotics and Applications. Lecture Notes in Computer Science. Springer International Publishing, Cham, pp. 628-637. https://doi.org/10.1007/978-3-030-89092-6 es_ES
dc.description.references Zhu, D., Liu, Q., Hu, Z., 2011. Fault-tolerant control algorithm of the manned submarine with multi-thruster based on quantum-behaved particle swarm optimisation. International Journal of Control 84 (11), 1817-1829. https://doi.org/10.1080/00207179.2011.626458 es_ES
dc.description.references Zhu, D., Wang, L., Hu, Z., Yang, S. X., 2021. A Grasshopper Optimization-based fault-tolerant control algorithm for a human occupied submarine with the multi-thruster system. Ocean Engineering 242, 110101. https://doi.org/10.1016/j.oceaneng.2021.110101 es_ES
dc.relation.references 10.1109/OCEANSAP.2016.7485620 es_ES
dc.relation.references 10.1109/.2001.980841 es_ES
dc.relation.references 10.1109/ADPRL.2014.7010621 es_ES
dc.relation.references 10.1109/ICRA.2014.6907821 es_ES
dc.relation.references 10.1016/S1697-7912(09)70268-7 es_ES
dc.relation.references 10.1016/j.measurement.2019.04.083 es_ES
dc.relation.references 10.1007/3-540-45737-2_4 es_ES
dc.relation.references 10.1016/j.isatra.2018.02.021 es_ES
dc.relation.references 10.1017/CBO9780511804441 es_ES
dc.relation.references 10.17979/spudc.9788497498418.0001 es_ES
dc.relation.references 10.1109/ACCESS.2022.3152190 es_ES
dc.relation.references 10.1109/TCST.2010.2060199 es_ES
dc.relation.references 10.1016/j.arcontrol.2018.10.004 es_ES
dc.relation.references 10.1109/CCDC49329.2020.9164413 es_ES
dc.relation.references 10.1137/060678993 es_ES
dc.relation.references 10.1016/j.oceaneng.2020.107882 es_ES
dc.relation.references 10.1109/TVT.2021.3050044 es_ES
dc.relation.references 10.1016/j.amc.2021.126078 es_ES
dc.relation.references 10.1049/cth2.12288 es_ES
dc.relation.references 10.1016/j.neucom.2021.02.035 es_ES
dc.relation.references 10.1109/TSMC.2022.3205782 es_ES
dc.relation.references 10.1016/j.oceaneng.2021.110290 es_ES
dc.relation.references 10.1016/j.oceaneng.2020.107855 es_ES
dc.relation.references 10.22214/ijraset.2019.11036 es_ES
dc.relation.references 10.1109/JOE.2015.2494918 es_ES
dc.relation.references 10.1007/978-3-030-69325-1_16 es_ES
dc.relation.references 10.1016/S1474-6670(17)35119-4 es_ES
dc.relation.references 10.1016/S0921-8890(00)00100-7 es_ES
dc.relation.references 10.1016/j.oceaneng.2017.11.039 es_ES
dc.relation.references 10.1109/MMAR.2012.6347891 es_ES
dc.relation.references 10.1109/TRA.2002.999650 es_ES
dc.relation.references 10.3390/machines10070582 es_ES
dc.relation.references 10.1007/978-94-015-7744-1_2 es_ES
dc.relation.references 10.1109/TSMC.2020.2964808 es_ES
dc.relation.references 10.1109/COMST.2021.3059998 es_ES
dc.relation.references 10.1007/978-3-030-89092-6_57 es_ES
dc.relation.references 10.1080/00207179.2011.626458 es_ES
dc.relation.references 10.1016/j.oceaneng.2021.110101 es_ES


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

 

Tema móvil para Riunet