Mostrar el registro sencillo del ítem
dc.contributor.author | Cerrada Collado, Cristina | es_ES |
dc.contributor.author | Chaos García, Dictino | es_ES |
dc.contributor.author | Moreno-Salinas, David | es_ES |
dc.contributor.author | Aranda Almansa, Joaquín | es_ES |
dc.date.accessioned | 2023-11-07T13:45:39Z | |
dc.date.available | 2023-11-07T13:45:39Z | |
dc.date.issued | 2023-09-29 | |
dc.identifier.issn | 1697-7912 | |
dc.identifier.uri | http://hdl.handle.net/10251/199440 | |
dc.description.abstract | [EN] The present paper presents a optimization problem of a control law to minimize the integral square error produced by driving an AUV (Autonomous Underwater Vehicle) using a single thruster from a start point to a desired recovery area. In addition, two possible control solutions are studied and their implementation in the real vehicle. Genetic algorithms are employed to optimize the control law and two solutions are proposed. In the first solution, a control law sampled as a function of time is optimized. And in the second solutions, an optimal control action as a function of the orientation of the vehicle from a control law represented by a Fourier series is used. The correct functioning of the proposed solutions is demonstrated through a series of simulations that consider different conditions and possible situations. | es_ES |
dc.description.abstract | [ES] En este artículo se plantea el problema de optimización de una ley de control para minimizar el error cuadrático integral al conducir un AUV (Autonomous Underwater Vehicle, vehículo autónomo submarino) actuado con un único motor desde un punto de partida hasta una zona de recuperación deseada. Así mismo se muestran dos posibles soluciones de control y se discute su implementación en el vehículo. Para la optimización de la ley de control se utilizarán los algoritmos genéticos y se proponen dos soluciones: En la primera se optimiza la ley de control muestreada en función del tiempo. La segunda, por su parte, emplea una acción de control óptima en función de la orientación del vehículo a partir de una ley de control representada mediante una serie de Fourier. El correcto funcionamiento de las soluciones propuestas se demuestra mediante una serie de simulaciones que consideran distintas condiciones y situaciones posibles. | es_ES |
dc.description.sponsorship | Este artículo ha sido financiado por el Ministerio de Ciencia e Innovación a través del proyecto con referencia PID2020-112502RB-C44. | es_ES |
dc.language | Español | es_ES |
dc.publisher | Universitat Politècnica de València | es_ES |
dc.relation.ispartof | Revista Iberoamericana de Automática e Informática industrial | es_ES |
dc.rights | Reconocimiento - No comercial - Compartir igual (by-nc-sa) | es_ES |
dc.subject | Automatic control of marine and underwater systems | es_ES |
dc.subject | Optimal control | es_ES |
dc.subject | Nonlinear control | es_ES |
dc.subject | Fault-tolerant control | es_ES |
dc.subject | Control no lineal | es_ES |
dc.subject | Control automático de sistemas marinos y subacuáticos | es_ES |
dc.subject | Acomodación de fallos en sistemas de control | es_ES |
dc.subject | Control óptimo | es_ES |
dc.title | Ley de control óptima de un AUV funcionando con un único motor | es_ES |
dc.title.alternative | Optimal control law of an AUV using a single thruster | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.4995/riai.2023.19034 | |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-112502RB-C44/ES/NAUTILUS: MODELADO E IDENTIFICACION DE AUVS. ENFOQUES TEORICOS Y PRACTICOS./ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Cerrada Collado, C.; Chaos García, D.; Moreno-Salinas, D.; Aranda Almansa, J. (2023). Ley de control óptima de un AUV funcionando con un único motor. Revista Iberoamericana de Automática e Informática industrial. 20(4):389-400. https://doi.org/10.4995/riai.2023.19034 | es_ES |
dc.description.accrualMethod | OJS | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/riai.2023.19034 | es_ES |
dc.description.upvformatpinicio | 389 | es_ES |
dc.description.upvformatpfin | 400 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 20 | es_ES |
dc.description.issue | 4 | es_ES |
dc.identifier.eissn | 1697-7920 | |
dc.relation.pasarela | OJS\19034 | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.description.references | Abreu, P. C., Botelho, J., Gois, P., Pascoal, A., Ribeiro, J., Ribeiro, M., Rufino, M., Sebastiao, L., Silva, H., 2016. The MEDUSA class of autonomous marine vehicles and their role in EU projects. In: OCEANS 2016 - Shanghai. pp. 1-10. https://doi.org/10.1109/OCEANSAP.2016.7485620 | es_ES |
dc.description.references | Aguiar, A., Pascoal, A., 2001. Regulation of a nonholonomic autonomous underwater vehicle with parametric modeling uncertainty using Lyapunov functions. In: Decision and Control, 2001. Proceedings of the 40th IEEE Conference on. Vol. 5. pp. 4178-4183. https://doi.org/10.1109/.2001.980841 | es_ES |
dc.description.references | Ahmadzadeh, S. R., Kormushev, P., Caldwell, D. G., 2014a. Multi-objective reinforcement learning for AUV thruster failure recovery. In: 2014 IEEE Symposium on Adaptive Dynamic Programming and Reinforcement Learning (ADPRL). pp. 1-8. https://doi.org/10.1109/ADPRL.2014.7010621 | es_ES |
dc.description.references | Ahmadzadeh, S. R., Leonetti, M., Carrera, A., Carreras, M., Kormushev, P., Caldwell, D. G., 2014b. Online discovery of AUV control policies to overcome thruster failures. In: 2014 IEEE International Conference on Robotics and Automation (ICRA). pp. 6522-6528. https://doi.org/10.1109/ICRA.2014.6907821 | es_ES |
dc.description.references | Alvarez, C., Saltarén, R., Aracil, R., García, C., 2009. Concepcion, Desarrollo y Avances en el Control de Navegacion de Robots Submarinos Paralelos: el Robot REMO-I. Revista Iberoamericana de Automatica e Informática industrial 6 (3), 92-100. https://doi.org/10.1016/S1697-7912(09)70268-7 | es_ES |
dc.description.references | Amin, A. A., Hasan, K. M., 2019. A review of Fault Tolerant Control Systems: Advancements and applications. Measurement 143, 58-68. https://doi.org/10.1016/j.measurement.2019.04.083 | es_ES |
dc.description.references | Antonelli, G., 2003. A Survey of Fault Detection/Tolerance Strategies for AUVs and ROVs. In: Caccavale, F., Villani, L. (Eds.), Fault Diagnosis and Fault Tolerance for Mechatronic Systems:Recent Advances. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 109-127. https://doi.org/10.1007/3-540-45737-2 | es_ES |
dc.description.references | Baldini, A., Ciabattoni, L., Felicetti, R., Ferracuti, F., Freddi, A., Monteriu, A., 2018. Dynamic surface fault tolerant control for underwater remotely operated vehicles. ISA Transactions 78, 10-20. https://doi.org/10.1016/j.isatra.2018.02.021 | es_ES |
dc.description.references | Boyd, S., Vandenberghe, L., 2004. Convex Optimization. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9780511804441 | es_ES |
dc.description.references | Cerrada, C., Chaos, D., Moreno-Salinas, D., Aranda, J., 2022. Optimización ley de control para un AUV funcionando con un único motor. In: XLIII Jornadas de Automática. pp. 1-8. https://doi.org/10.17979/spudc.9788497498418.0001 | es_ES |
dc.description.references | Chaos, D., Moreno-Salinas, D., Aranda, J., 2022. Fault-Tolerant Control for AUVs Using a Single Thruster. IEEE Access 10, 22123-22139. https://doi.org/10.1109/ACCESS.2022.3152190 | es_ES |
dc.description.references | Corradini, M. L., Monteriu, A., Orlando, G., 2011. An Actuator Failure Tolerant Control Scheme for an Underwater Remotely Operated Vehicle. IEEE Transactions on Control Systems Technology 19 (5), 1036-1046. https://doi.org/10.1109/TCST.2010.2060199 | es_ES |
dc.description.references | Crasta, N., Moreno-Salinas, D., Pascoal, A. M., Aranda, J., 2018. Multiple autonomous surface vehicle motion planning for cooperative range-based underwater target localization. Annual Reviews in Control 46, 326-342. https://doi.org/10.1016/j.arcontrol.2018.10.004 | es_ES |
dc.description.references | Ding, X., Zhu, D., 2020. Research on Static Fault-tolerant Control Method of UUV Based on MPC in Two Dimension. In: 2020 Chinese Control And Decision Conference (CCDC). pp. 5333-5338. https://doi.org/10.1109/CCDC49329.2020.9164413 | es_ES |
dc.description.references | Fossen, T. I., 2002. Marine Control Systems: Guidance, Navigation and Control of Ships, Rigs and Underwater Vehicles. Marine Cybernetics AS, Trondheim. | es_ES |
dc.description.references | Ghabcheloo, R., Aguiar, A. P., Pascoal, A., Silvestre, C., Kaminer, I., Hespanha, J., 2009. Coordinated Path-Following in the Presence of Communication Losses and Time Delays. SIAM Journal on Control and Optimization 48 (1), 234-265. https://doi.org/10.1137/060678993 | es_ES |
dc.description.references | Hao, L.-Y., Zhang, H., Li, H., Li, T.-S., 2020. Sliding mode fault-tolerant control for unmanned marine vehicles with signal quantization and time-delay. Ocean Engineering 215, 107882. https://doi.org/10.1016/j.oceaneng.2020.107882 | es_ES |
dc.description.references | Hao, L.-Y., Zhang, H., Li, T.-S., Lin, B., Chen, C. L. P., 2021a. Fault Tolerant Control for Dynamic Positioning of Unmanned Marine Vehicles Based on T-S Fuzzy Model With Unknown Membership Functions. IEEE Transactions on Vehicular Technology 70 (1), 146-157. https://doi.org/10.1109/TVT.2021.3050044 | es_ES |
dc.description.references | Hao, L.-Y., Zhang, Y.-Q., Li, H., 2021b. Fault-tolerant control via integral sliding mode output feedback for unmanned marine vehicles. Applied Mathematics and Computation 401, 126078. https://doi.org/10.1016/j.amc.2021.126078 | es_ES |
dc.description.references | Hou, C., Li, X., Wang, H., Zhai, P., Lu, H., 2022. Fuzzy linear extended states observer-based iteration learning fault-tolerant control for autonomous underwater vehicle trajectory-tracking system. IET Control Theory & Applications, 1-14. https://doi.org/10.1049/cth2.12288 | es_ES |
dc.description.references | Kramer, O., 2017. Genetic Algorithm Essentials. Springer International Publishing AG, part of Springer Nature, Cham. | es_ES |
dc.description.references | Leonetti, M., Ahmadzadeh, S. R., Kormushev, P., 2013. On-line learning to recover from thruster failures on Autonomous Underwater Vehicles. In: 2013 OCEANS - San Diego. pp. 1-6. DOI: 10.23919/OCEANS.2013.6741265 | es_ES |
dc.description.references | Li, H., Pan, J., Zhang, X., Yu, J., 2021. Integral-based event-triggered fault estimation and impulsive fault-tolerant control for networked control systems applied to underwater vehicles. Neurocomputing 442, 36-47. https://doi.org/10.1016/j.neucom.2021.02.035 | es_ES |
dc.description.references | Li, H., Xu, J., Yu, J., 2022. Discrete Event-Triggered Fault-Tolerant Control of Underwater Vehicles Based on Takagi-Sugeno Fuzzy Model. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 1-11. https://doi.org/10.1109/TSMC.2022.3205782 | es_ES |
dc.description.references | Liu, F., Tang, H., Qin, Y., Duan, C., Luo, J., Pu, H., 2022. Review on fault diagnosis of unmanned underwater vehicles. Ocean Engineering 243, 110290. https://doi.org/10.1016/j.oceaneng.2021.110290 | es_ES |
dc.description.references | Lv, T., Zhou, J., Wang, Y., Gong, W., Zhang, M., 2020. Sliding mode based fault tolerant control for autonomous underwater vehicle. Ocean Engineering 216, 107855. https://doi.org/10.1016/j.oceaneng.2020.107855 | es_ES |
dc.description.references | Mondal, K., Banerjee, T., 2019. Autonomous Underwater Vehicles: Recent Developments and Future Prospects. International Journal for Research in Applied Science and Engineering Technology 7, 215-222. https://doi.org/10.22214/ijraset.2019.11036 | es_ES |
dc.description.references | Moreno-Salinas, D., Pascoal, A., Aranda, J., 2016. Optimal Sensor Placement for Acoustic Underwater Target Positioning With Range-Only Measurements. IEEE Journal of Oceanic Engineering 41 (3), 620-643. https://doi.org/10.1109/JOE.2015.2494918 | es_ES |
dc.description.references | Ozturk, A., 2021. Lessons Learned from Robotics and AI in a Liability Context: A Sustainability Perspective. In: Carpenter, A., Johansson, T. M., Skinner, J. A. (Eds.), Sustainability in the Maritime Domain: Towards Ocean Governance and Beyond. Springer International Publishing, Cham, pp. 315-335. https://doi.org/10.1007/978-3-030-69325-1_16 | es_ES |
dc.description.references | Pearson, A. R., Sutton, R., Burns, R. S., Robinson, P., 2001. A Fuzzy Fault Tolerant Control Scheme for an Autonomous Underwater Vehicle. IFAC Proceedings Volumes 34 (7), 425-430. https://doi.org/10.1016/S1474-6670(17)35119-4 | es_ES |
dc.description.references | Podder, T. K., Sarkar, N., 2001. Fault-tolerant control of an autonomous underwater vehicle under thruster redundancy. Robotics and Autonomous Systems 34 (1), 39-52. https://doi.org/10.1016/S0921-8890(00)00100-7 | es_ES |
dc.description.references | Pugi, L., Allotta, B., Pagliai, M., 2018. Redundant and reconfigurable propulsion systems to improve motion capability of underwater vehicles. Ocean Engineering 148, 376-385. https://doi.org/10.1016/j.oceaneng.2017.11.039 | es_ES |
dc.description.references | Puig, V., Quevedo, J., Escobet, T., Morcego, B., Ocampo, C., 2004a. Control Tolerante a Fallos (Parte I): Fundamentos y Diagnostico de Fallos. Revista Iberoamericana de Automática e Informática industrial 1 (1), 15-31. | es_ES |
dc.description.references | Puig, V., Quevedo, J., Escobet, T., Morcego, B., Ocampo, C., 2004b. Control Tolerante a Fallos (Parte II): Mecanismos de Tolerancia y Sistema Supervisor. Revista Iberoamericana de Automática e Informática Industrial 1 (2), 5-21. | es_ES |
dc.description.references | Rauber, J. G., Santos, C. H. F. d., Chiella, A. C. B., Motta, L. R. H., 2012. A strategy for thruster fault-tolerant control applied to an AUV. In: 2012 17th International Conference on Methods Models in Automation Robotics (MMAR). pp. 184-189. https://doi.org/10.1109/MMAR.2012.6347891 | es_ES |
dc.description.references | Sarkar, N., Podder, T. K., Antonelli, G., 2002. Fault-accommodating thruster force allocation of an AUV considering thruster redundancy and saturation. IEEE Transactions on Robotics and Automation 18 (2), 223-233. https://doi.org/10.1109/TRA.2002.999650 | es_ES |
dc.description.references | SNAME, 1950. Nomenclature for Treating the Motion of a Sumerged Body Through a Fluid. Tech. rep., The Society of naval Architects and Marine Engineers, series: Technical and research bulletin Nº 3-47. | es_ES |
dc.description.references | Tian, Q.,Wang, T., Liu, B., Ran, G., 2022. Thruster Fault Diagnostics and Fault Tolerant Control for Autonomous Underwater Vehicle with Ocean Currents. Machines 10 (7), 582. https://doi.org/10.3390/machines10070582 | es_ES |
dc.description.references | Tolstov, G. P., Silverman, R. A., 1976. Fourier Series. Dover Publications, Inc., New York. | es_ES |
dc.description.references | van Laarhoven, P. J. M., Aarts, E. H. L., 1987. Simulated annealing. Springer Netherlands, Dordrecht, pp. 7-15. https://doi.org/10.1007/978-94-015-7744-1 | es_ES |
dc.description.references | Wang, Y., Jiang, B., Wu, Z., Xie, S., Peng, Y., 2020. Adaptive Sliding Mode Fault-Tolerant Fuzzy Tracking Control With Application to Unmanned Marine Vehicles. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 1-10. https://doi.org/10.1109/TSMC.2020.2964808 | es_ES |
dc.description.references | Yang, Y., Xiao, Y., Li, T., 2021. A Survey of Autonomous Underwater Vehicle Formation: Performance, Formation Control, and Communication Capability. IEEE Communications Surveys & Tutorials 23 (2), 815-841. https://doi.org/10.1109/COMST.2021.3059998 | es_ES |
dc.description.references | Zhang, H., Zhu, D., 2021. Quantum-Behaved Particle Swarm Optimization Fault-Tolerant Control for Human Occupied Vehicle. In: Liu, X.-J., Nie, Z., Yu, J., Xie, F., Song, R. (Eds.), Intelligent Robotics and Applications. Lecture Notes in Computer Science. Springer International Publishing, Cham, pp. 628-637. https://doi.org/10.1007/978-3-030-89092-6 | es_ES |
dc.description.references | Zhu, D., Liu, Q., Hu, Z., 2011. Fault-tolerant control algorithm of the manned submarine with multi-thruster based on quantum-behaved particle swarm optimisation. International Journal of Control 84 (11), 1817-1829. https://doi.org/10.1080/00207179.2011.626458 | es_ES |
dc.description.references | Zhu, D., Wang, L., Hu, Z., Yang, S. X., 2021. A Grasshopper Optimization-based fault-tolerant control algorithm for a human occupied submarine with the multi-thruster system. Ocean Engineering 242, 110101. https://doi.org/10.1016/j.oceaneng.2021.110101 | es_ES |
dc.relation.references | 10.1109/OCEANSAP.2016.7485620 | es_ES |
dc.relation.references | 10.1109/.2001.980841 | es_ES |
dc.relation.references | 10.1109/ADPRL.2014.7010621 | es_ES |
dc.relation.references | 10.1109/ICRA.2014.6907821 | es_ES |
dc.relation.references | 10.1016/S1697-7912(09)70268-7 | es_ES |
dc.relation.references | 10.1016/j.measurement.2019.04.083 | es_ES |
dc.relation.references | 10.1007/3-540-45737-2_4 | es_ES |
dc.relation.references | 10.1016/j.isatra.2018.02.021 | es_ES |
dc.relation.references | 10.1017/CBO9780511804441 | es_ES |
dc.relation.references | 10.17979/spudc.9788497498418.0001 | es_ES |
dc.relation.references | 10.1109/ACCESS.2022.3152190 | es_ES |
dc.relation.references | 10.1109/TCST.2010.2060199 | es_ES |
dc.relation.references | 10.1016/j.arcontrol.2018.10.004 | es_ES |
dc.relation.references | 10.1109/CCDC49329.2020.9164413 | es_ES |
dc.relation.references | 10.1137/060678993 | es_ES |
dc.relation.references | 10.1016/j.oceaneng.2020.107882 | es_ES |
dc.relation.references | 10.1109/TVT.2021.3050044 | es_ES |
dc.relation.references | 10.1016/j.amc.2021.126078 | es_ES |
dc.relation.references | 10.1049/cth2.12288 | es_ES |
dc.relation.references | 10.1016/j.neucom.2021.02.035 | es_ES |
dc.relation.references | 10.1109/TSMC.2022.3205782 | es_ES |
dc.relation.references | 10.1016/j.oceaneng.2021.110290 | es_ES |
dc.relation.references | 10.1016/j.oceaneng.2020.107855 | es_ES |
dc.relation.references | 10.22214/ijraset.2019.11036 | es_ES |
dc.relation.references | 10.1109/JOE.2015.2494918 | es_ES |
dc.relation.references | 10.1007/978-3-030-69325-1_16 | es_ES |
dc.relation.references | 10.1016/S1474-6670(17)35119-4 | es_ES |
dc.relation.references | 10.1016/S0921-8890(00)00100-7 | es_ES |
dc.relation.references | 10.1016/j.oceaneng.2017.11.039 | es_ES |
dc.relation.references | 10.1109/MMAR.2012.6347891 | es_ES |
dc.relation.references | 10.1109/TRA.2002.999650 | es_ES |
dc.relation.references | 10.3390/machines10070582 | es_ES |
dc.relation.references | 10.1007/978-94-015-7744-1_2 | es_ES |
dc.relation.references | 10.1109/TSMC.2020.2964808 | es_ES |
dc.relation.references | 10.1109/COMST.2021.3059998 | es_ES |
dc.relation.references | 10.1007/978-3-030-89092-6_57 | es_ES |
dc.relation.references | 10.1080/00207179.2011.626458 | es_ES |
dc.relation.references | 10.1016/j.oceaneng.2021.110101 | es_ES |