Riunet Móvil

Home Versión de escritorio

UAV fully-actuated: modelo, control y comparación con configuración coplanaria

Mostrar el registro sencillo del ítem

dc.contributor.author González-Morgado, Antonio es_ES
dc.contributor.author Álvarez-Cía, Carlos es_ES
dc.contributor.author Heredia Benot, Guillermo es_ES
dc.contributor.author Ollero Baturone, Aníbal es_ES
dc.date.accessioned 2023-11-14T08:15:26Z
dc.date.available 2023-11-14T08:15:26Z
dc.date.issued 2023-09-29
dc.identifier.issn 1697-7912
dc.identifier.uri http://hdl.handle.net/10251/199594
dc.description.abstract [EN] With the development of aerial robotics, new multi-rotor platforms, known as fully-actuated, have appeared. These platforms have the ability to move without tilting the platform. This article presents a comparison in terms of motion capabilities between a coplanar hexarotor, standard configuration, and a tilted-propellers hexarotor, fully-actuated configuration. For this purpose, this paper presents the design, modelling and control of both configurations. Both platforms are compared with different trajectories through simulations and experiments. Also, unique capabilities of the fully-actuated platform, such as the ability to hover at a tilt angle, are shown. Finally, the use of the fully-actuated platform for visual inspection of bridge beams is included. Video of the paper: https://youtu.be/d95Qvz5hba4 es_ES
dc.description.abstract [ES] Con el desarrollo de la robótica aérea han aparecido nuevas plataformas de multirotores de actuación completa (fully-actuated en inglés), las cuales tienen la capacidad de desplazarse sin inclinar la plataforma. Este artículo presenta una comparación en cuanto a capacidades de movimiento entre un hexarotor de rotores coplanarios, configuración estándar, y un hexarotor de rotores inclinados, configuración fully-actuated. Para ello, se presenta el diseño, modelo y control de ambas configuraciones. Tras el montaje de las plataformas, se comparan con diferentes trayectorias, mediante simulaciones y experimentos. Así mismo, se muestran capacidades exclusivas de la plataforma fully-actuated, como la capacidad de mantenerse en hover con un ángulo de inclinación. Finalmente, se presenta la aplicación de la plataforma fully-actuated para inspección visual de techos de puentes. Vídeo del artículo:  https://youtu.be/d95Qvz5hba4 es_ES
dc.description.sponsorship Este trabajo ha sido parcialmente financiado por los proyectos ROBMIND (PDC2021-121524-I00) y HAERA (PID2020-119027RB-I00), financiados por el Ministerio de Economía, Industria y Competitividad, y los proyectos AERIAL-CORE (H2020-2019-871479) y AEROTRAIN (MSCA-ITN-2020-953454), financiados por la Comisión Europea. es_ES
dc.language Español es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Revista Iberoamericana de Automática e Informática industrial es_ES
dc.rights Reconocimiento - No comercial - Compartir igual (by-nc-sa) es_ES
dc.subject UAVs es_ES
dc.subject Aerial robotics es_ES
dc.subject Robotics es_ES
dc.subject Modeling es_ES
dc.subject Robótica aérea es_ES
dc.subject Robótica es_ES
dc.subject Modelado es_ES
dc.title UAV fully-actuated: modelo, control y comparación con configuración coplanaria es_ES
dc.title.alternative UAV Fully-Actuated: model, control and comparison with coplanar configuration es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/riai.2023.19348
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/871479/EU//AERIAL-CORE es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-119027RB-I00/ES/SISTEMA ROBOTICO HIBRIDO AEREO-ACUATICO PARA MUESTREO, MONITORIZACION E INTERVENCION/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/953454/EU//AEROTRAIN es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//PDC2021-121524-I00 es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation González-Morgado, A.; Álvarez-Cía, C.; Heredia Benot, G.; Ollero Baturone, A. (2023). UAV fully-actuated: modelo, control y comparación con configuración coplanaria. Revista Iberoamericana de Automática e Informática industrial. 20(4):401-411. https://doi.org/10.4995/riai.2023.19348 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/riai.2023.19348 es_ES
dc.description.upvformatpinicio 401 es_ES
dc.description.upvformatpfin 411 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 20 es_ES
dc.description.issue 4 es_ES
dc.identifier.eissn 1697-7920
dc.relation.pasarela OJS\19348 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Ahmed, H., La, H. M., Gucunski, N., 2020. Review of non-destructive civil infrastructure evaluation for bridges: State-of-the-art robotic platforms, sensors and algorithms. Sensors 20 (14). https://doi.org/10.3390/s20143954 es_ES
dc.description.references Armengol, I., Suarez, A., Heredia, G., Ollero, A., 2021. Design, Integration and Testing of Compliant Gripper for the Installation of Helical Bird Diverters on Power Lines. In: 2021 Aerial Robotic Systems Physically Interacting with the Environment (AIRPHARO). pp. 1-8. https://doi.org/10.1109/AIRPHARO52252.2021.9571044 es_ES
dc.description.references Bodie, K., Brunner, M., Pantic, M., Walser, S., Pfndler, P., Angst, U., Siegwart, R., Nieto, J., jun 2019. An omnidirectional aerial manipulation platform for contact-based inspection. Robotics: Science and Systems Foundation. https://doi.org/10.15607/RSS.2019.XV.019 es_ES
dc.description.references Brescianini, D., D'Andrea, R., 2016. Design, modeling and control of an omnidirectional aerial vehicle. In: 2016 IEEE International Conference on Robotics and Automation (ICRA). pp. 3261-3266. https://doi.org/10.1109/ICRA.2016.7487497 es_ES
dc.description.references Garofano-Soldado, A., Sanchez-Cuevas, P. J., Heredia, G., Ollero, A., 2022. Numerical-experimental evaluation and modelling of aerodynamic ground effect for small-scale tilted propellers at low reynolds numbers. Aerospace Science and Technology 126, 107625. https://doi.org/10.1016/j.ast.2022.107625 es_ES
dc.description.references González Morgado, A., Álvarez-Cía, C., Heredia, G., Ollero Baturone, A., 2022. UAV fully-actuated: modelo, control y comparación con configuración coplanaria. In: XLIII Jornadas de Automática. Universidade da Coru˜na. Servizo de Publicacións, pp. 700-707. https://doi.org/10.17979/spudc.9788497498418.0700 es_ES
dc.description.references Ivanovic, A., Markovic, L., Car, M., Duvnjak, I., Orsag, M., 2021. Towards autonomous bridge inspection: Sensor mounting using aerial manipulators. Applied Sciences 11 (18). https://doi.org/10.3390/app11188279 es_ES
dc.description.references Kamel, M., Verling, S., Elkhatib, O., Sprecher, C.,Wulkop, P., Taylor, Z., Siegwart, R., Gilitschenski, I., 2018. The voliro omniorientational hexacopter: An agile and maneuverable tiltable-rotor aerial vehicle. IEEE Robotics & Automation Magazine 25 (4), 34-44. https://doi.org/10.1109/MRA.2018.2866758 es_ES
dc.description.references Lanegger, C., Ruggia, M., Tognon, M., Ott, L., Siegwart, R., 2022-06. Aerial layouting: Design and control of a compliant and actuated end-effector for precise in-flight marking on ceilings. In: Proceedings of Robotics: Science and System XVIII. p. p073. https://doi.org/10.15607/RSS.2022.XVIII.073 es_ES
dc.description.references Lassen, P., Fumagalli, M., 2022. Can your drone touch? exploring the boundaries of consumer-grade multirotors for physical interaction. In: 2022 International Conference on Robotics and Automation (ICRA). pp. 1-7. https://doi.org/10.1109/ICRA46639.2022.9812187 es_ES
dc.description.references Ollero, A., Heredia, G., Franchi, A., Antonelli, G., Kondak, K., Sanfeliu, A., Viguria, A., Martinez-de Dios, J. R., Pierri, F., Cortes, J., Santamaria-Navarro, A., Trujillo Soto, M. A., Balachandran, R., Andrade-Cetto, J., Rodriguez, A., 2018. The AEROARMS Project: Aerial Robots with Advanced Manipulation Capabilities for Inspection and Maintenance. IEEE Robotics Automation Magazine 25 (4), 12-23. es_ES
dc.description.references https://doi.org/10.1109/MRA.2018.2852789 es_ES
dc.description.references Ollero, A., Tognon, M., Suarez, A., Lee, D., Franchi, A., 2022. Past, present, and future of aerial robotic manipulators. IEEE Transactions on Robotics 38 (1), 626-645. https://doi.org/10.1109/TRO.2021.3084395 es_ES
dc.description.references Rajappa, S., Ryll, M., B¨ulthoff, H. H., Franchi, A., 2015. Modeling, control and design optimization for a fully-actuated hexarotor aerial vehicle with tilted propellers. In: 2015 IEEE International Conference on Robotics and Automation (ICRA). pp. 4006-4013. https://doi.org/10.1109/ICRA.2015.7139759 es_ES
dc.description.references Ryll, M., Bicego, D., Franchi, A., 2016. Modeling and control of fast-hex: A fully-actuated by synchronized-tilting hexarotor. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). pp. 1689- 1694. https://doi.org/10.1109/IROS.2016.7759271 es_ES
dc.description.references Ryll, M., B¨ulthoff, H. H., Giordano, P. R., 2015. A novel overactuated quadrotor unmanned aerial vehicle: Modeling, control, and experimental validation. IEEE Transactions on Control Systems Technology 23 (2), 540-556. https://doi.org/10.1109/TCST.2014.2330999 es_ES
dc.description.references Ryll, M., Muscio, G., Pierri, F., Cataldi, E., Antonelli, G., Caccavale, F., Franchi, A., 2017. 6d physical interaction with a fully actuated aerial robot. In: 2017 IEEE International Conference on Robotics and Automation (ICRA). pp. 5190-5195. https://doi.org/10.1109/ICRA.2017.7989608 es_ES
dc.description.references Sanchez-Cuevas, P. J., Gonzalez-Morgado, A., Cortes, N., Gayango, D. B., Jimenez-Cano, A. E., Ollero, A., Heredia, G., 2020. Fully-actuated aerial manipulator for infrastructure contact inspection: Design, modeling, localization, and control. Sensors 20 (17). URL: https://www.mdpi.com/1424-8220/20/17/4708 https://doi.org/10.3390/s20174708 es_ES
dc.description.references Suarez, A., Romero, H., Salmoral, R., Acosta, J. A., Zambrano, J., Ollero, A., 2021. Experimental Evaluation of Aerial Manipulation Robot for the Installation of Clip Type Bird Diverters: Outdoor Flight Tests. In: 2021 Aerial Robotic Systems Physically Interacting with the environment (AIRPHARO). pp. 1-7. https://doi.org/10.1109/AIRPHARO52252.2021.9571029 es_ES
dc.description.references Trujillo, M. A., Martínez-de Dios, J. R., Mart'ın, C., Viguria, A., Ollero, A., 2019. Novel Aerial Manipulator for Accurate and Robust Industrial NDT Contact Inspection: A New Tool for the Oil and Gas Inspection Industry. Sensors 19 (6). https://doi.org/10.3390/s19061305 es_ES
dc.relation.references 10.3390/s20143954 es_ES
dc.relation.references 10.1109/AIRPHARO52252.2021.9571044 es_ES
dc.relation.references 10.15607/RSS.2019.XV.019 es_ES
dc.relation.references 10.1109/ICRA.2016.7487497 es_ES
dc.relation.references 10.1016/j.ast.2022.107625 es_ES
dc.relation.references 10.17979/spudc.9788497498418.0700 es_ES
dc.relation.references 10.3390/app11188279 es_ES
dc.relation.references 10.1109/MRA.2018.2866758 es_ES
dc.relation.references 10.15607/RSS.2022.XVIII.073 es_ES
dc.relation.references 10.1109/ICRA46639.2022.9812187 es_ES
dc.relation.references 10.1109/MRA.2018.2852789 es_ES
dc.relation.references 10.1109/TRO.2021.3084395 es_ES
dc.relation.references 10.1109/ICRA.2015.7139759 es_ES
dc.relation.references 10.1109/IROS.2016.7759271 es_ES
dc.relation.references 10.1109/TCST.2014.2330999 es_ES
dc.relation.references 10.1109/ICRA.2017.7989608 es_ES
dc.relation.references 10.3390/s20174708 es_ES
dc.relation.references 10.1109/AIRPHARO52252.2021.9571029 es_ES
dc.relation.references 10.3390/s19061305 es_ES


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

 

Tema móvil para Riunet