Riunet Móvil

Home Versión de escritorio

Ćirić-generalized contraction via wt−distance

Mostrar el registro sencillo del ítem

dc.contributor.author Lakzian, Hosein es_ES
dc.contributor.author Kocev, Darko es_ES
dc.contributor.author Rakočević, Vladimir es_ES
dc.date.accessioned 2023-11-14T13:48:11Z
dc.date.available 2023-11-14T13:48:11Z
dc.date.issued 2023-10-02
dc.identifier.issn 1576-9402
dc.identifier.uri http://hdl.handle.net/10251/199644
dc.description.abstract [EN] In this present paper, besides other things, we introduce the concept of Ćirić-generalized contractions via wt−distance and then we will prove some new fixed point results for these mappings, which generalize and improve fixed point theorems by L. B. Ćirić in [9, 8, 10] and also, B. E. Rhoades in [23]. Some examples illustrate usefulness of the new results. At the end, we will give some applications to nonlinear fractional differential equations. es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Applied General Topology es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Fixed point es_ES
dc.subject Wt-distance es_ES
dc.subject Ćirić-generalized contraction es_ES
dc.subject (ψ,Mp,l)-weakly contractive mappings es_ES
dc.title Ćirić-generalized contraction via wt−distance es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/agt.2023.19268
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Lakzian, H.; Kocev, D.; Rakočević, V. (2023). Ćirić-generalized contraction via wt−distance. Applied General Topology. 24(2):267-280. https://doi.org/10.4995/agt.2023.19268 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/agt.2023.19268 es_ES
dc.description.upvformatpinicio 267 es_ES
dc.description.upvformatpfin 280 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 24 es_ES
dc.description.issue 2 es_ES
dc.identifier.eissn 1989-4147
dc.relation.pasarela OJS\19268 es_ES
dc.description.references Ya. I. Alber and S. Guerre-Delabriere, Principles of weakly contractive maps in Hilbert spaces. In: New Results in Operator Theory. Advances and Appl. Gohberg, I., Lyubich,Yu. (eds) Birkhauser Verlag, Basel 98 (1997), 7-22. https://doi.org/10.1007/978-3-0348-8910-0_2 es_ES
dc.description.references H. Afshari, H. R. Marasi and H. Aydi, Existence and uniqueness of positive solutions for boundary value problems of fractional differential equations, Filomat 31, no. 9 (2017), 2675-2682. https://doi.org/10.2298/FIL1709675A es_ES
dc.description.references R. P. Agarwal, S. Arshad, D. O'Regan and V. Lupulescu, A Schauder fixed point theorem in semilinear spaces and applications, Fixed Point Theory Appl. 2013 (2013), 306. https://doi.org/10.1186/1687-1812-2013-306 es_ES
dc.description.references R. P. Agarwal, V. Lakshmikantham and J. J. Nieto, On the concept of solution for fractional differential equations with uncertainty, Nonlinear Anal. 72 (2010), 2859-2862. https://doi.org/10.1016/j.na.2009.11.029 es_ES
dc.description.references S. Aleksić, Z. Mitrović and S. Radenović , On some recent fixed point results for single and multi-valued mappings in b-metric spaces, Fasc. Matematica 61 (2018), 5-16. es_ES
dc.description.references T. V. An, L. Q. Tuyen and N. V. Dung, Stone-type theorem on $b$-metric spaces and applications, Topology Appl. 185-186 (2015), 50-64. https://doi.org/10.1016/j.topol.2015.02.005 es_ES
dc.description.references I. A. Bakhtin, The contraction mapping principle in quasimetric spaces, Funct. Anal., Ulianowsk Gos. Ped. Inst. 30 (1989), 26-37. es_ES
dc.description.references L. B. Ćirić , Generalized contraction and fixed point theorems, Publ. Inst. Math. 12 (26) (1971), 19-26. es_ES
dc.description.references L. B. Ćirić , A generalization of Banach's contraction principle, Proc. Amer. Math. Soc. 45 (1974), 267-273. https://doi.org/10.1090/S0002-9939-1974-0356011-2 es_ES
dc.description.references L. B. Ćirić , On mappings with contractive iteration, Publ. Inst. Math.(N.S) 46 (40) (1979), 79-82. es_ES
dc.description.references S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostrav. 1 (1993), 5-11. es_ES
dc.description.references S. Czerwik, Nonlinear set-valued contraction mappings in b-metric spaces, Atti Sem. Mat. Fis. Univ. Modena 46 (1998), 263-276. es_ES
dc.description.references A. K. Dubey, R. Shukla and R. P. Dubey, Some fixed point results in b-metric spaces, Asian Journal of Math. and Appl. 2014, 6 pages. https://doi.org/10.14445/22315373/IJMTT-V9P510 es_ES
dc.description.references N. Hussain, R. Saadati and P. Agrawal, On the topology and wt-distance on metric type spaces, Fixed Point Theory Appl. 2014 (2014), 88. https://doi.org/10.1186/1687-1812-2014-88 es_ES
dc.description.references O. Kada, T. Suzuki and W. Takahashi, Nonconvex minimization theorems and fixed point theorems in complete metric spaces, Math. Japonica 44 (1996), 381-591. es_ES
dc.description.references M. A. Khamsi and N. Hussain, KKM mappings in metric type spaces, Nonlinear Anal. 73 (2010), 3123-3129. https://doi.org/10.1016/j.na.2010.06.084 es_ES
dc.description.references D. Kocev and V. Rakočević, On a theorem of Brian Fisher in the framework of w-distance, Carp. Jour. Math. 33 (2017), 199-205. https://doi.org/10.37193/CJM.2017.02.07 es_ES
dc.description.references D. Kocev, H. Lakzian and V. Rakočević, Ćirić's and Fisher's quasi-contractions in the framework of wt-distance, Rendiconti del Circolo Matematico di Palermo 72 (2023), 377-391. https://doi.org/10.1007/s12215-021-00684-w es_ES
dc.description.references P. Kumam, N. V. Dung and V. T. L. Hang, Some equivalences between cone b-metric spaces and b-metric spaces, Abstr. Appl. Anal. 2013 (2013), 573740. es_ES
dc.description.references H. Lakzian, H. Aydi and B. E. Rhoades, Fixed points for (φ,ψ,p)-weakly contractive mappings in metric spaces with w-distance, Applied Math. Comput. 219 (2013), 6777-6782. https://doi.org/10.1016/j.amc.2012.11.025 es_ES
dc.description.references H. Lakzian and B. E. Rhoades, Some fixed point theorems using weaker Meir-Keeler function in metric spaces with w-distance, Applied Mathematics and Computation 342 (2019), 18-25. https://doi.org/10.1016/j.amc.2018.06.048 es_ES
dc.description.references V. Rakočević , Fixed Point Results in W-Distance Spaces, CRC Press, Taylor & Francis Group, Boca Raton, London, New York, 2022. https://doi.org/10.1201/9781003213444 es_ES
dc.description.references B. E. Rhoades, Some theorems on weakly contractive maps, Nonlinear Anal. 47 (2001), 2683-2693. https://doi.org/10.1016/S0362-546X(01)00388-1 es_ES
dc.relation.references 10.1007/978-3-0348-8910-0_2 es_ES
dc.relation.references 10.2298/FIL1709675A es_ES
dc.relation.references 10.1186/1687-1812-2013-306 es_ES
dc.relation.references 10.1016/j.na.2009.11.029 es_ES
dc.relation.references 10.1016/j.topol.2015.02.005 es_ES
dc.relation.references 10.1090/S0002-9939-1974-0356011-2 es_ES
dc.relation.references 10.14445/22315373/IJMTT-V9P510 es_ES
dc.relation.references 10.1186/1687-1812-2014-88 es_ES
dc.relation.references 10.1016/j.na.2010.06.084 es_ES
dc.relation.references 10.37193/CJM.2017.02.07 es_ES
dc.relation.references 10.1007/s12215-021-00684-w es_ES
dc.relation.references 10.1186/1687-1812-2013-5 es_ES
dc.relation.references 10.1016/j.amc.2012.11.025 es_ES
dc.relation.references 10.1016/j.amc.2018.06.048 es_ES
dc.relation.references 10.1201/9781003213444 es_ES
dc.relation.references 10.1016/S0362-546X(01)00388-1 es_ES


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

 

Tema móvil para Riunet