Mostrar el registro sencillo del ítem
dc.contributor.author | Lakzian, Hosein | es_ES |
dc.contributor.author | Kocev, Darko | es_ES |
dc.contributor.author | Rakočević, Vladimir | es_ES |
dc.date.accessioned | 2023-11-14T13:48:11Z | |
dc.date.available | 2023-11-14T13:48:11Z | |
dc.date.issued | 2023-10-02 | |
dc.identifier.issn | 1576-9402 | |
dc.identifier.uri | http://hdl.handle.net/10251/199644 | |
dc.description.abstract | [EN] In this present paper, besides other things, we introduce the concept of Ćirić-generalized contractions via wt−distance and then we will prove some new fixed point results for these mappings, which generalize and improve fixed point theorems by L. B. Ćirić in [9, 8, 10] and also, B. E. Rhoades in [23]. Some examples illustrate usefulness of the new results. At the end, we will give some applications to nonlinear fractional differential equations. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Universitat Politècnica de València | es_ES |
dc.relation.ispartof | Applied General Topology | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Fixed point | es_ES |
dc.subject | Wt-distance | es_ES |
dc.subject | Ćirić-generalized contraction | es_ES |
dc.subject | (ψ,Mp,l)-weakly contractive mappings | es_ES |
dc.title | Ćirić-generalized contraction via wt−distance | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.4995/agt.2023.19268 | |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Lakzian, H.; Kocev, D.; Rakočević, V. (2023). Ćirić-generalized contraction via wt−distance. Applied General Topology. 24(2):267-280. https://doi.org/10.4995/agt.2023.19268 | es_ES |
dc.description.accrualMethod | OJS | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/agt.2023.19268 | es_ES |
dc.description.upvformatpinicio | 267 | es_ES |
dc.description.upvformatpfin | 280 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 24 | es_ES |
dc.description.issue | 2 | es_ES |
dc.identifier.eissn | 1989-4147 | |
dc.relation.pasarela | OJS\19268 | es_ES |
dc.description.references | Ya. I. Alber and S. Guerre-Delabriere, Principles of weakly contractive maps in Hilbert spaces. In: New Results in Operator Theory. Advances and Appl. Gohberg, I., Lyubich,Yu. (eds) Birkhauser Verlag, Basel 98 (1997), 7-22. https://doi.org/10.1007/978-3-0348-8910-0_2 | es_ES |
dc.description.references | H. Afshari, H. R. Marasi and H. Aydi, Existence and uniqueness of positive solutions for boundary value problems of fractional differential equations, Filomat 31, no. 9 (2017), 2675-2682. https://doi.org/10.2298/FIL1709675A | es_ES |
dc.description.references | R. P. Agarwal, S. Arshad, D. O'Regan and V. Lupulescu, A Schauder fixed point theorem in semilinear spaces and applications, Fixed Point Theory Appl. 2013 (2013), 306. https://doi.org/10.1186/1687-1812-2013-306 | es_ES |
dc.description.references | R. P. Agarwal, V. Lakshmikantham and J. J. Nieto, On the concept of solution for fractional differential equations with uncertainty, Nonlinear Anal. 72 (2010), 2859-2862. https://doi.org/10.1016/j.na.2009.11.029 | es_ES |
dc.description.references | S. Aleksić, Z. Mitrović and S. Radenović , On some recent fixed point results for single and multi-valued mappings in b-metric spaces, Fasc. Matematica 61 (2018), 5-16. | es_ES |
dc.description.references | T. V. An, L. Q. Tuyen and N. V. Dung, Stone-type theorem on $b$-metric spaces and applications, Topology Appl. 185-186 (2015), 50-64. https://doi.org/10.1016/j.topol.2015.02.005 | es_ES |
dc.description.references | I. A. Bakhtin, The contraction mapping principle in quasimetric spaces, Funct. Anal., Ulianowsk Gos. Ped. Inst. 30 (1989), 26-37. | es_ES |
dc.description.references | L. B. Ćirić , Generalized contraction and fixed point theorems, Publ. Inst. Math. 12 (26) (1971), 19-26. | es_ES |
dc.description.references | L. B. Ćirić , A generalization of Banach's contraction principle, Proc. Amer. Math. Soc. 45 (1974), 267-273. https://doi.org/10.1090/S0002-9939-1974-0356011-2 | es_ES |
dc.description.references | L. B. Ćirić , On mappings with contractive iteration, Publ. Inst. Math.(N.S) 46 (40) (1979), 79-82. | es_ES |
dc.description.references | S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostrav. 1 (1993), 5-11. | es_ES |
dc.description.references | S. Czerwik, Nonlinear set-valued contraction mappings in b-metric spaces, Atti Sem. Mat. Fis. Univ. Modena 46 (1998), 263-276. | es_ES |
dc.description.references | A. K. Dubey, R. Shukla and R. P. Dubey, Some fixed point results in b-metric spaces, Asian Journal of Math. and Appl. 2014, 6 pages. https://doi.org/10.14445/22315373/IJMTT-V9P510 | es_ES |
dc.description.references | N. Hussain, R. Saadati and P. Agrawal, On the topology and wt-distance on metric type spaces, Fixed Point Theory Appl. 2014 (2014), 88. https://doi.org/10.1186/1687-1812-2014-88 | es_ES |
dc.description.references | O. Kada, T. Suzuki and W. Takahashi, Nonconvex minimization theorems and fixed point theorems in complete metric spaces, Math. Japonica 44 (1996), 381-591. | es_ES |
dc.description.references | M. A. Khamsi and N. Hussain, KKM mappings in metric type spaces, Nonlinear Anal. 73 (2010), 3123-3129. https://doi.org/10.1016/j.na.2010.06.084 | es_ES |
dc.description.references | D. Kocev and V. Rakočević, On a theorem of Brian Fisher in the framework of w-distance, Carp. Jour. Math. 33 (2017), 199-205. https://doi.org/10.37193/CJM.2017.02.07 | es_ES |
dc.description.references | D. Kocev, H. Lakzian and V. Rakočević, Ćirić's and Fisher's quasi-contractions in the framework of wt-distance, Rendiconti del Circolo Matematico di Palermo 72 (2023), 377-391. https://doi.org/10.1007/s12215-021-00684-w | es_ES |
dc.description.references | P. Kumam, N. V. Dung and V. T. L. Hang, Some equivalences between cone b-metric spaces and b-metric spaces, Abstr. Appl. Anal. 2013 (2013), 573740. | es_ES |
dc.description.references | H. Lakzian, H. Aydi and B. E. Rhoades, Fixed points for (φ,ψ,p)-weakly contractive mappings in metric spaces with w-distance, Applied Math. Comput. 219 (2013), 6777-6782. https://doi.org/10.1016/j.amc.2012.11.025 | es_ES |
dc.description.references | H. Lakzian and B. E. Rhoades, Some fixed point theorems using weaker Meir-Keeler function in metric spaces with w-distance, Applied Mathematics and Computation 342 (2019), 18-25. https://doi.org/10.1016/j.amc.2018.06.048 | es_ES |
dc.description.references | V. Rakočević , Fixed Point Results in W-Distance Spaces, CRC Press, Taylor & Francis Group, Boca Raton, London, New York, 2022. https://doi.org/10.1201/9781003213444 | es_ES |
dc.description.references | B. E. Rhoades, Some theorems on weakly contractive maps, Nonlinear Anal. 47 (2001), 2683-2693. https://doi.org/10.1016/S0362-546X(01)00388-1 | es_ES |
dc.relation.references | 10.1007/978-3-0348-8910-0_2 | es_ES |
dc.relation.references | 10.2298/FIL1709675A | es_ES |
dc.relation.references | 10.1186/1687-1812-2013-306 | es_ES |
dc.relation.references | 10.1016/j.na.2009.11.029 | es_ES |
dc.relation.references | 10.1016/j.topol.2015.02.005 | es_ES |
dc.relation.references | 10.1090/S0002-9939-1974-0356011-2 | es_ES |
dc.relation.references | 10.14445/22315373/IJMTT-V9P510 | es_ES |
dc.relation.references | 10.1186/1687-1812-2014-88 | es_ES |
dc.relation.references | 10.1016/j.na.2010.06.084 | es_ES |
dc.relation.references | 10.37193/CJM.2017.02.07 | es_ES |
dc.relation.references | 10.1007/s12215-021-00684-w | es_ES |
dc.relation.references | 10.1186/1687-1812-2013-5 | es_ES |
dc.relation.references | 10.1016/j.amc.2012.11.025 | es_ES |
dc.relation.references | 10.1016/j.amc.2018.06.048 | es_ES |
dc.relation.references | 10.1201/9781003213444 | es_ES |
dc.relation.references | 10.1016/S0362-546X(01)00388-1 | es_ES |