Mostrar el registro sencillo del ítem
dc.contributor.author | Mukhamadiev, Farkhod | es_ES |
dc.date.accessioned | 2023-11-15T07:33:30Z | |
dc.date.available | 2023-11-15T07:33:30Z | |
dc.date.issued | 2023-10-02 | |
dc.identifier.issn | 1576-9402 | |
dc.identifier.uri | http://hdl.handle.net/10251/199690 | |
dc.description.abstract | [EN] In this paper, we study the behavior of some topological and cardinal properties of topological spaces under the influence of the Nτφ -kernel of a space X. It has been proved that the Nτφ-kernel of a space X preserves the density and the network π - weight of normal spaces. Besides, shown that the N-compact kernel of a space X preserves the Souslin properties, the weight, the density, and the π -network weight of normal spaces. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Universitat Politècnica de València | es_ES |
dc.relation.ispartof | Applied General Topology | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Souslin number | es_ES |
dc.subject | Weight | es_ES |
dc.subject | Density | es_ES |
dc.subject | Complete linked systems | es_ES |
dc.subject | N-compact kernel of a space | es_ES |
dc.subject | Nτφ-kernel of a space | es_ES |
dc.title | Some topological and cardinal properties of the Nτφ-nucleus of a space X | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.4995/agt.2023.17884 | |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Mukhamadiev, F. (2023). Some topological and cardinal properties of the Nτφ-nucleus of a space X. Applied General Topology. 24(2):423-432. https://doi.org/10.4995/agt.2023.17884 | es_ES |
dc.description.accrualMethod | OJS | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/agt.2023.17884 | es_ES |
dc.description.upvformatpinicio | 423 | es_ES |
dc.description.upvformatpfin | 432 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 24 | es_ES |
dc.description.issue | 2 | es_ES |
dc.identifier.eissn | 1989-4147 | |
dc.relation.pasarela | OJS\17884 | es_ES |
dc.description.references | A. V. Arkhangel'skii, An approximation of the theory of dyadic bicompacta, Dokl. Akad. Nauk SSSR, 184, no. 4 (1969), 767-770. | es_ES |
dc.description.references | A. V. Arkhangel'skii, Topological Space of Functions, Mosk. Gos. Univ.,Moscow, 1989 (in Russian). | es_ES |
dc.description.references | R. B. Beshimov, Some properties of the functor O_ β, J. Math. Sci. 133 (2006), 1599-1601. https://doi.org/10.1007/s10958-006-0070-5 | es_ES |
dc.description.references | R. B. Beshimov, D. N. Georgiou, and R. M. Zhuraev, Index boundedness and uniform connectedness of space of the G-permutation degree, Appl. Gen. Topol. 22, no. 2 (2021), 447-459. https://doi.org/10.4995/agt.2021.15566 | es_ES |
dc.description.references | R. B. Beshimov, and F. G. Mukhamadiev, Some cardinal properties of complete linked systems with compact elements and absolute regular spaces, Mathematica Aeterna 3, no. 8 (2013), 625-633. | es_ES |
dc.description.references | R. B. Beshimov, and D. T. Safarova, Some tpological properties of a functor of finite degree, Lobachevskii J. Math. 42 (2021) 2744-2753. https://doi.org/10.1134/S1995080221120088 | es_ES |
dc.description.references | R. Engelking, General Topology, Heldermannn, Berlin, 1989. | es_ES |
dc.description.references | A. V. Ivanov, The space of complete enchained systems, Siberian Math. J. 27, no. 6 (1986), 863-375. https://doi.org/10.1007/BF00970004 | es_ES |
dc.description.references | E. V. Kashuba, A generalization of the Katetov Theorem for seminormal functors, Tr. Petrozavodsk. Gos. Univ. Ser. Mat. no. 13 (2006), 82-89. | es_ES |
dc.description.references | E. V. Kashuba, E. N. Stepanova, On the extension of seminormal functors to the category of Tychonoff spaces, Sibirsk. Mat. Zh. 59, no. 2 (2018), 362-368. Siberian Math. J. 59, no. 2 (2018), 283-287. https://doi.org/10.1134/S0037446618020118 | es_ES |
dc.description.references | Lj. D. R. Kočinac, F. G. Mukhamadiev, and A. K. Sadullaev, Some cardinal and geometric properties of the space of permutation degree, Axioms 11, no. 6 (2022), 290. https://doi.org/10.3390/axioms11060290 | es_ES |
dc.description.references | Lj. D. R. Kočinac, F. G. Mukhamadiev, and A. K. Sadullaev, Some topological and cardinal properties of the space of permutation degree, Filomat, to appear. | es_ES |
dc.description.references | T. Makhmud, On cardinal invariants of spaces of linked systems, Vestnik Moskov. Univ. Ser. I Mat. Mekh. 1995, no. 4 (1995), 14--19. | es_ES |
dc.description.references | F. G. Mukhamadiev, On certain cardinal properties of the N_τ φ-nucleus of a space X, J. Math. Sci. 245 (2020), 411-415. https://doi.org/10.1007/s10958-020-04704-5 | es_ES |
dc.description.references | F. G. Mukhamadiev, Hewitt-Nachbin number of the space of thin complete linked systems. Geometry and topology, Itogi Nauki i Tekhniki. Ser. Sovrem. Mat. Pril. Temat. Obz., 197, VINITI, Moscow, 2021, 95-100. https://doi.org/10.36535/0233-6723-2021-197-95-100 | es_ES |
dc.description.references | F. G. Mukhamadiev, On local weak τ-density of topological spaces, Vestn. Tomsk. Gos. Univ. Mat. Mekh. 2021, no 70, 16-23. https://doi.org/10.17223/19988621/70/2 | es_ES |
dc.description.references | F. G. Mukhamadiev, Local τ-density of the sum and the superextension of topological spaces. Differential equations, geometry, and topology, Itogi Nauki i Tekhniki. Ser. Sovrem. Mat. Pril. Temat. Obz., 201, VINITI, Moscow, 2021, 103-106. https://doi.org/10.36535/0233-6723-2021-201-103-106 | es_ES |
dc.description.references | T. K. Yuldashev, and F. G. Mukhamadiev, Caliber of space of subtle complete coupled systems, Lobachevskii J. Math. 42 (2021), 3043-3047. https://doi.org/10.1134/S1995080221120398 | es_ES |
dc.description.references | T. K. Yuldashev, and F. G. Mukhamadiev, The local density and the local weak density in the space of permutation degree and in Hattori space, Ural. Math. J. 6, no. 2 (2020), 108-116. https://doi.org/10.15826/umj.2020.2.011 | es_ES |
dc.description.references | T. K. Yuldashev, and F. G. Mukhamadiev, Local τ-density and local weak τ-density in topological spaces, Siberian Electronic Mathematical Reports 18, no. 1 (2021), 474-478. https://doi.org/10.33048/semi.2021.18.033 | es_ES |
dc.relation.references | 10.1007/s10958-006-0070-5 | es_ES |
dc.relation.references | 10.4995/agt.2021.15566 | es_ES |
dc.relation.references | 10.1134/S1995080221120088 | es_ES |
dc.relation.references | 10.1007/BF00970004 | es_ES |
dc.relation.references | 10.1134/S0037446618020118 | es_ES |
dc.relation.references | 10.3390/axioms11060290 | es_ES |
dc.relation.references | 10.1007/s10958-020-04704-5 | es_ES |
dc.relation.references | 10.36535/0233-6723-2021-197-95-100 | es_ES |
dc.relation.references | 10.17223/19988621/70/2 | es_ES |
dc.relation.references | 10.36535/0233-6723-2021-201-103-106 | es_ES |
dc.relation.references | 10.1134/S1995080221120398 | es_ES |
dc.relation.references | 10.15826/umj.2020.2.011 | es_ES |
dc.relation.references | 10.33048/semi.2021.18.033 | es_ES |