Riunet Móvil

Home Versión de escritorio

Pettis property for Polish inverse semigroups

Mostrar el registro sencillo del ítem

dc.contributor.author Arana, Karen es_ES
dc.contributor.author Pérez, Jerson es_ES
dc.contributor.author Uzcátegui, Carlos es_ES
dc.date.accessioned 2023-11-15T07:43:30Z
dc.date.available 2023-11-15T07:43:30Z
dc.date.issued 2023-10-02
dc.identifier.issn 1576-9402
dc.identifier.uri http://hdl.handle.net/10251/199699
dc.description.abstract [EN] We study a property about Polish inverse semigroups similar to the classical theorem of Pettis about Polish groups. In contrast to what happens with Polish groups, not every Polish inverse semigroup have the Pettis property. We present several examples of Polish inverse subsemigroup of the symmetric inverse semigroup I(N) of all partial bijections between subsets of N. We also study whether our examples satisfy automatic continuity. es_ES
dc.description.abstract [ES] Estudiamos una propiedad de semigrupos inversos polacos análoga al teorema clásico de Pettis sobre grupos polacos. A diferencia de lo que ocurre con los grupos, mostramos que no todo semigrupo inverso polaco tiene la propiedad de Pettis. Presentamos varios ejemplos de subsemigrupos inversos polacos del semigrupo inverso simátrico I(N) que consiste de todas las biyecciones parciales entre subconjuntos de N. También estudiaremos si esos semigrupos poseen la propiedad de continuidad automática. es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Applied General Topology es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Inverse topological semigroups es_ES
dc.subject Polish semigroups es_ES
dc.subject Pettis theorem es_ES
dc.subject Automatic continuity es_ES
dc.title Pettis property for Polish inverse semigroups es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/agt.2023.17396
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Arana, K.; Pérez, J.; Uzcátegui, C. (2023). Pettis property for Polish inverse semigroups. Applied General Topology. 24(2):455-467. https://doi.org/10.4995/agt.2023.17396 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/agt.2023.17396 es_ES
dc.description.upvformatpinicio 455 es_ES
dc.description.upvformatpfin 467 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 24 es_ES
dc.description.issue 2 es_ES
dc.identifier.eissn 1989-4147
dc.relation.pasarela OJS\17396 es_ES
dc.description.references J. Carruth, H. Hildebrant, and R. Koch, The theory of topological semigroups, Monographs and Textbooks in Pure and Applied Mathematics vol. 75, Marcel Dekker, Inc., New York, 1983. es_ES
dc.description.references L. Elliott, J. Jonušas, Z. Mesyan, J. D. Mitchell, M. Morayne, and Y. P'eresse, Automatic continuity, unique Polish topologies, and Zariski topologies (Part I, monoids), https://arxiv.org/abs/1912.07029, 2020. es_ES
dc.description.references L. Elliott, J. Jonušas, J. D. Mitchell, Y. Péresse, and M. Pinsker, Polish topologies on endomorphism monoids of relational structures, https://arxiv.org/abs/2203.11577, 2022. es_ES
dc.description.references O. V. Gutik, J. Lawson, and D. Repovš, Semigroup closures of finite rank symmetric inverse semigroups, Semigroup Forum 78, no. 2 (2009), 326-336. https://doi.org/10.1007/s00233-008-9112-2 es_ES
dc.description.references O. V. Gutik, and A. R. Reiter, Symmetric inverse topological semigroups of finite rank ≤ n, Mat. Metodi Fiz.-Mekh. Polya 52, no. 3 (2009), 7-14. es_ES
dc.description.references J. Howie, Fundamentals of semigroup theory, London Mathematical Society Monographs. New Series 12. Oxford University Press, New York, Second Edition, 2003. es_ES
dc.description.references A. Kechris, Classical Descriptive Set Theory. Graduate Texts in Mathematics 156. Springer-Verlag, New York, 1995. https://doi.org/10.1007/978-1-4612-4190-4 es_ES
dc.description.references A. Kechris, and C. Rosendal, Turbulence, amalgamation, and generic automorphisms of homogeneous structures, Proc. Lond. Math. Soc. 94, no. 2 (2008), 302-350. https://doi.org/10.1112/plms/pdl007 es_ES
dc.description.references Z. Mesyan, J. Mitchell, and Y. Péresse, Topological transformation monoids, https://arxiv.org/abs/1809.04590, 2018. es_ES
dc.description.references J. Pérez, and C. Uzcátegui, Topologies on the symmetric inverse semigroup, Semigroup Forum 104 (2022), 398-414. https://doi.org/10.1007/s00233-021-10242-6 es_ES
dc.description.references C. Rosendal, Automatic continuity of group homomorphisms, Bull. Symbolic Logic 15, no. 2 (2009), 184-214. https://doi.org/10.2178/bsl/1243948486 es_ES
dc.description.references C. Rosendal, and S. Solecki, Automatic continuity of homomorphisms and fixed points on metric compacta, Israel J. Math. 162 (2007), 349-371. https://doi.org/10.1007/s11856-007-0102-y es_ES
dc.description.references M. Sabok, Automatic continuity for isometry groups, J. Inst. Math. Jussieu 18, no. 3 (2019), 561-590. https://doi.org/10.1017/S1474748017000135 es_ES
dc.description.references C. Uzcátegui-Aylwin, Ideals on countable sets: a survey with questions, Rev. Integr. temas mat. 37, no. 1 (2019), 167-198. https://doi.org/10.18273/revint.v37n1-2019009 es_ES
dc.relation.references 10.1016/j.aim.2023.109214 es_ES
dc.relation.references 10.1007/s00233-008-9112-2 es_ES
dc.relation.references 10.1007/978-1-4612-4190-4 es_ES
dc.relation.references 10.1112/plms/pdl007 es_ES
dc.relation.references 10.1007/s00233-021-10242-6 es_ES
dc.relation.references 10.2178/bsl/1243948486 es_ES
dc.relation.references 10.1007/s11856-007-0102-y es_ES
dc.relation.references 10.1017/S1474748017000135 es_ES
dc.relation.references 10.18273/revint.v37n1-2019009 es_ES


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

 

Tema móvil para Riunet