Riunet Móvil

Home Versión de escritorio

A New Optimal Numerical Root-Solver for Solving Systems of Nonlinear Equations Using Local, Semi-Local, and Stability Analysis

Mostrar el registro sencillo del ítem

dc.contributor.author Qureshi, Sania es_ES
dc.contributor.author Chicharro, Francisco I. es_ES
dc.contributor.author Argyros, Ioannis K. es_ES
dc.contributor.author Soomro, Amanullah es_ES
dc.contributor.author Alahmadi, Jihan es_ES
dc.contributor.author Hincal, Evren es_ES
dc.date.accessioned 2024-11-11T19:03:51Z
dc.date.available 2024-11-11T19:03:51Z
dc.date.issued 2024-06 es_ES
dc.identifier.uri http://hdl.handle.net/10251/211618
dc.description.abstract [EN] This paper introduces an iterative method with a remarkable level of accuracy, namely fourth-order convergence. The method is specifically tailored to meet the optimality condition under the Kung-Traub conjecture by linear combination. This method, with an efficiency index of approximately 1.5874, employs a blend of localized and semi-localized analysis to improve both efficiency and convergence. This study aims to investigate semi-local convergence, dynamical analysis to assess stability and convergence rate, and the use of the proposed solver for systems of nonlinear equations. The results underscore the potential of the proposed method for several applications in polynomiography and other areas of mathematical research. The improved performance of the proposed optimal method is demonstrated with mathematical models taken from many domains, such as physics, mechanics, chemistry, and combustion, to name a few. es_ES
dc.description.sponsorship F.I.C. received partial funding from "Ayuda a Primeros Proyectos de Investigacion (PAID-06-23), Vicerrectorado de Investigacion de la Universitat Politecnica de Valencia (UPV)", in the project MERLIN framework. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Axioms es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Optimal solvers es_ES
dc.subject Polynomial visualization es_ES
dc.subject Convergence without relying on Taylor Series es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title A New Optimal Numerical Root-Solver for Solving Systems of Nonlinear Equations Using Local, Semi-Local, and Stability Analysis es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/axioms13060341 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV-VIN//PAID-06-23//Mejora de la Eficiencia en la Resolución de problemas no LINeales (MERLIN)/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Telecomunicación - Escola Tècnica Superior d'Enginyers de Telecomunicació es_ES
dc.description.bibliographicCitation Qureshi, S.; Chicharro, FI.; Argyros, IK.; Soomro, A.; Alahmadi, J.; Hincal, E. (2024). A New Optimal Numerical Root-Solver for Solving Systems of Nonlinear Equations Using Local, Semi-Local, and Stability Analysis. Axioms. 13(6). https://doi.org/10.3390/axioms13060341 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/axioms13060341 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 13 es_ES
dc.description.issue 6 es_ES
dc.identifier.eissn 2075-1680 es_ES
dc.relation.pasarela S\518730 es_ES
dc.contributor.funder UNIVERSIDAD POLITECNICA DE VALENCIA es_ES
dc.subject.ods 05.- Alcanzar la igualdad entre los géneros y empoderar a todas las mujeres y niñas es_ES
dc.subject.ods 07.- Asegurar el acceso a energías asequibles, fiables, sostenibles y modernas para todos es_ES
dc.subject.ods 09.- Desarrollar infraestructuras resilientes, promover la industrialización inclusiva y sostenible, y fomentar la innovación es_ES


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

 

Tema móvil para Riunet