Título: Study of hydration kinetics of tissue-mimicking hydrogels
Autor: Navarro Sabater, Érika
Resumen: [ES] Implementació i comparació de models mitjançant xarxes neuronals per a l'observació i predicció del comportament dels hidrogels en la porositat dels teixits a partir de dades registrades. L'estudi tracta d'analitzar les dades sobre el comportament dels hidrogels en els porus de teixits tous mitjançant l'elaboració de xarxes neuronals en MATLAB que puguen predir aquest comportament. La finalitat de l'estudi és ajudar als investigadors que han recollit les dades sobre els hidrogels i la porositat a saber com interpretar-les i relacionar-les.[EN] Implementation and comparison of models using neural networks for the observation and prediction of hydrogel behavior in tissue porosity based on recorded data. The study aims to analyze the data on hydrogel behavior in the pores of soft tissues by developing neural networks in MATLAB that can predict this behavior. The purpose of the study is to assist researchers who have collected data on hydrogels and porosity in understanding how to interpret and relate these data.[EN] Hydrogels are materials with the capacity to absorb and release significant amounts of fluid in
response to externa lfactors such as mechanical stress, pH changes ,or temperature variations.
This propertyi is utilized in applications like drug deliver yan dimpurity absorption.The fluid
absorption processis called swelling or hydration,andi tsr everse is known as deswelling or
dehydration. This study evaluates several lmodels for characterizing the deswelling behavior
of hydrogels, including the First-Order Kinetic Model,Fickian Diffusion Model, Non-Fickian
Diffusion Model, Double Exponential Non-Linear Regression Model, BrokenS tick Model, and
Polynomial Model (2ndDegree). Among these, the Polynomial Model (2nd Degree) proved to
be the most effective in capturing deswelling dynamics ,providing superiorf it quality. Future
research could explore applying these model s to different hydrogels or conditions to further
enhance their practical applicability.