Riunet Móvil

Home Versión de escritorio

Extending the hyper-logistic model to the random setting: new theoretical results with real-world applications

Mostrar el registro sencillo del ítem

dc.contributor.author Cortés, J.-C. es_ES
dc.contributor.author Navarro-Quiles, Ana es_ES
dc.contributor.author Sferle, Sorina Madalina es_ES
dc.date.accessioned 2025-02-26T19:09:56Z
dc.date.available 2025-02-26T19:09:56Z
dc.date.issued 2024-05 es_ES
dc.identifier.issn 0170-4214 es_ES
dc.identifier.uri http://hdl.handle.net/10251/214876
dc.description.abstract [EN] We develop a full randomization of the classical hyper-logistic growth model by obtaining closed-form expressions for relevant quantities of interest, such as the first probability density function of its solution, the time until a given fixed population is reached, and the population at the inflection point. These results are obtained under very general hypotheses on the distributions of the random model parameters by taking extensive advantage of the so-called random variable transformation method. To illustrate the practical implications of our findings, we apply them to model the growth of multicellular tumor spheroids using empirical data. In this context, we explore two methodologies-the Bayesian approach and the random least mean square method-aimed at effectively addressing the challenge of assigning appropriate distributions to model parameters. This ensures that probabilistic fits accurately capture the inherent uncertainties of tumor growth dynamics. Finally, we notably show that the results obtained using both approaches in the randomized hyper-logistic model align closely with each other, surpassing those yielded by the randomized logistic model. es_ES
dc.description.sponsorship MCIN/AEI/10.13039/501100011033 (Agencia Estatal de Investigacion),Grant/Award Number:PID2020-115270GB-I00 and PRE2021-101090; FSE+(Fondo SocialEuropeo Plus). es_ES
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation.ispartof Mathematical Methods in the Applied Sciences es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Hyper-logistic model es_ES
dc.subject Random differential equation es_ES
dc.subject Real-world application es_ES
dc.subject Uncertainty quantification es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Extending the hyper-logistic model to the random setting: new theoretical results with real-world applications es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/mma.10206 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-115270GB-I00/ES/ECUACIONES DIFERENCIALES ALEATORIAS. CUANTIFICACION DE LA INCERTIDUMBRE Y APLICACIONES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Matemática Multidisciplinar - Institut Universitari de Matemàtica Multidisciplinària es_ES
dc.contributor.affiliation Universitat Politècnica de València. Facultad de Administración y Dirección de Empresas - Facultat d'Administració i Direcció d'Empreses es_ES
dc.description.bibliographicCitation Cortés, J.; Navarro-Quiles, A.; Sferle, SM. (2024). Extending the hyper-logistic model to the random setting: new theoretical results with real-world applications. Mathematical Methods in the Applied Sciences. https://doi.org/10.1002/mma.10206 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1002/mma.10206 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.pasarela S\517733 es_ES
dc.contributor.funder European Social Fund es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.contributor.funder Universitat Politècnica de València es_ES


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

 

Tema móvil para Riunet