Riunet Móvil

Home Versión de escritorio

Determination of biomass drying speed using neural networks

Mostrar el registro sencillo del ítem

dc.contributor.author Velázquez Martí, Borja es_ES
dc.contributor.author Bonini Neto, Alfredo es_ES
dc.contributor.author Nuñez Retana, Daniel es_ES
dc.contributor.author Carrillo Parra, Artemio es_ES
dc.contributor.author Guerrero-Luzuriaga, Sebastian es_ES
dc.date.accessioned 2025-02-27T19:03:09Z
dc.date.available 2025-02-27T19:03:09Z
dc.date.issued 2024-07 es_ES
dc.identifier.issn 0961-9534 es_ES
dc.identifier.uri http://hdl.handle.net/10251/214926
dc.description.abstract [EN] The difficulty of measuring the drying rate of biomass under hot air convection conditions due to the influence of multiple factors, such as environmental conditions and material properties; and the problems associated with the variability of desiccation curves under changing conditions makes the use of mass transfer models based on diffusion and convection generally quite inaccurate. The research proposes the use of neural networks to determine the average drying speed (g removed water in unit of biomass material (kg) in unit time (s)), highlighting its ability to handle complex and variable data, as well as its adaptability and robustness. After 62 iterations, the R 2 of the training process reached values of 0.93. Subsequent validation provided an R 2 of 0.88. The mean square error was less than 10 -3 g dryed water kg -1 biomass s -1 . Traditional mass transfer models applied to drying processes were compared with experimental data. It has been proven that the values of the convection coefficient in mass transfer are overestimated when obtained from the Sherwood number. Values of this coefficient applied to wood are 30 times lower due to capillary phenomena and electrostatic forces between the material and the water particles. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Biomass and Bioenergy es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Neuronal networks applications es_ES
dc.subject Biomass drying es_ES
dc.subject Biomass processing es_ES
dc.subject Drying kinetics es_ES
dc.subject.classification INGENIERIA AGROFORESTAL es_ES
dc.title Determination of biomass drying speed using neural networks es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.biombioe.2024.107260 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural - Escola Tècnica Superior d'Enginyeria Agronòmica i del Medi Natural es_ES
dc.description.bibliographicCitation Velázquez Martí, B.; Bonini Neto, A.; Nuñez Retana, D.; Carrillo Parra, A.; Guerrero-Luzuriaga, S. (2024). Determination of biomass drying speed using neural networks. Biomass and Bioenergy. 189. https://doi.org/10.1016/j.biombioe.2024.107260 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.biombioe.2024.107260 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 189 es_ES
dc.relation.pasarela S\520286 es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.subject.ods 09.- Desarrollar infraestructuras resilientes, promover la industrialización inclusiva y sostenible, y fomentar la innovación es_ES
dc.subject.ods 12.- Garantizar las pautas de consumo y de producción sostenibles es_ES
upv.costeAPC 3750 es_ES


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

 

Tema móvil para Riunet