Mostrar el registro sencillo del ítem
dc.contributor.author | Borrell Tomás, María Amparo![]() |
es_ES |
dc.contributor.author | Torrecillas, Ramón![]() |
es_ES |
dc.contributor.author | Rocha, Victoria G.![]() |
es_ES |
dc.contributor.author | Fernández, Adolfo![]() |
es_ES |
dc.date.accessioned | 2013-04-22T12:50:35Z | |
dc.date.issued | 2012-08 | |
dc.identifier.issn | 1615-6846 | |
dc.identifier.uri | http://hdl.handle.net/10251/28111 | |
dc.description.abstract | [EN] There is an increasing demand of multifunctional materials for a wide variety of technological developments. Bipolar plates for proton exchange membrane fuel cells are an example of complex functionality components that must show among other properties high mechanical strength, electrical, and thermal conductivity. The present research explored the possibility of using alumina¿carbon nanofibers (CNFs) nanocomposites for this purpose. In this study, it was studied for the first time the whole range of powder compositions in this system. Homogeneous powders mixtures were prepared and subsequently sintered by spark plasma sintering. The materials obtained were thoroughly characterized and compared in terms of properties required to be used as bipolar plates. The control on material microstructure and composition allows designing materials where mechanical or electrical performances are enhanced. A 50/50¿vol.% alumina¿CNFs composite appears to be a very promising material for this kind of application. | es_ES |
dc.description.sponsorship | This work has been carried out with financial support of National Plan Projects MAT2006-01783 and MAT2007-30989-E and the Regional Project FICYT PC07-021. A. Borrell, acknowledges the Spanish Ministry of Science and Innovation for Ph.D. grant. | |
dc.language | Español | es_ES |
dc.publisher | Wiley-VCH Verlag | es_ES |
dc.relation.ispartof | Fuel Cells | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Bipolar plates | es_ES |
dc.subject | Carbon Nanofibers | es_ES |
dc.subject | Nanocomposites | es_ES |
dc.subject | Spark plasma sintering | es_ES |
dc.subject.classification | CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA | es_ES |
dc.title | Alumina-carbon nanofibers nanocomposites obtained by spark plasma sintering for proton exchange membrane fuel cell bipolar plates | es_ES |
dc.type | Artículo | es_ES |
dc.embargo.lift | 10000-01-01 | |
dc.embargo.terms | forever | es_ES |
dc.identifier.doi | 10.1002/fuce.201100042 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MEC//MAT2006-01783/ES/MATERIALES CERAMICOS NANOESTRUCTURADOS TRANSPARENTES PARA APLICACIONES OPTICAS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/FICYT//PC07-021/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MEC//MAT2007-30989-E/ES/CERCANANO/ | |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Aplicaciones de las Tecnologías de la Información - Institut Universitari d'Aplicacions de les Tecnologies de la Informació | es_ES |
dc.description.bibliographicCitation | Borrell Tomás, MA.; Torrecillas, R.; Rocha, VG.; Fernández, A. (2012). Alumina-carbon nanofibers nanocomposites obtained by spark plasma sintering for proton exchange membrane fuel cell bipolar plates. Fuel Cells. 12(4):599-605. https://doi.org/10.1002/fuce.201100042 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://onlinelibrary.wiley.com/doi/10.1002/fuce.201100042/pdf | es_ES |
dc.description.upvformatpinicio | 599 | es_ES |
dc.description.upvformatpfin | 605 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 12 | es_ES |
dc.description.issue | 4 | es_ES |
dc.relation.senia | 192837 | |
dc.contributor.funder | Fundación para el Fomento en Asturias de la Investigación Científica Aplicada y la Tecnología | |
dc.contributor.funder | Ministerio de Educación y Ciencia | es_ES |
dc.description.references | Carrette, L., Friedrich, K. A., & Stimming, U. (2000). Fuel Cells: Principles, Types, Fuels, and Applications. ChemPhysChem, 1(4), 162-193. doi:10.1002/1439-7641(20001215)1:4<162::aid-cphc162>3.0.co;2-z | es_ES |
dc.description.references | Mehta, V., & Cooper, J. S. (2003). Review and analysis of PEM fuel cell design and manufacturing. Journal of Power Sources, 114(1), 32-53. doi:10.1016/s0378-7753(02)00542-6 | es_ES |
dc.description.references | 2002 www.afdc.energy.gov/afdc/pdfs/racetothefuture.pdf | es_ES |
dc.description.references | Steele, B. C. H., & Heinzel, A. (2001). Materials for fuel-cell technologies. Nature, 414(6861), 345-352. doi:10.1038/35104620 | es_ES |
dc.description.references | Bar-On, I., Kirchain, R., & Roth, R. (2002). Technical cost analysis for PEM fuel cells. Journal of Power Sources, 109(1), 71-75. doi:10.1016/s0378-7753(02)00062-9 | es_ES |
dc.description.references | Tsuchiya, H. (2004). Mass production cost of PEM fuel cell by learning curve. International Journal of Hydrogen Energy, 29(10), 985-990. doi:10.1016/j.ijhydene.2003.10.011 | es_ES |
dc.description.references | HERMANN, A., CHAUDHURI, T., & SPAGNOL, P. (2005). Bipolar plates for PEM fuel cells: A review. International Journal of Hydrogen Energy, 30(12), 1297-1302. doi:10.1016/j.ijhydene.2005.04.016 | es_ES |
dc.description.references | Wind, J., Späh, R., Kaiser, W., & Böhm, G. (2002). Metallic bipolar plates for PEM fuel cells. Journal of Power Sources, 105(2), 256-260. doi:10.1016/s0378-7753(01)00950-8 | es_ES |
dc.description.references | Dhakate, S. R., Sharma, S., Borah, M., Mathur, R. B., & Dhami, T. L. (2008). Development and Characterization of Expanded Graphite-Based Nanocomposite as Bipolar Plate for Polymer Electrolyte Membrane Fuel Cells (PEMFCs). Energy & Fuels, 22(5), 3329-3334. doi:10.1021/ef800135f | es_ES |
dc.description.references | Introduction to Glasses and Ceramic 1991 | es_ES |
dc.description.references | Merkoçi, A. (2005). Carbon Nanotubes in Analytical Sciences. Microchimica Acta, 152(3-4), 157-174. doi:10.1007/s00604-005-0439-z | es_ES |
dc.description.references | Groza, J. R., & Zavaliangos, A. (2000). Sintering activation by external electrical field. Materials Science and Engineering: A, 287(2), 171-177. doi:10.1016/s0921-5093(00)00771-1 | es_ES |
dc.description.references | Wang, S.-Y., Wang, W., Wang, W.-Z., & Du, Y.-W. (2002). Preparation and characterization of highly oriented NiO(200) films by a pulse ultrasonic spray pyrolysis method. Materials Science and Engineering: B, 90(1-2), 133-137. doi:10.1016/s0921-5107(01)00922-9 | es_ES |
dc.description.references | Ci, L., Wei, J., Wei, B., Liang, J., Xu, C., & Wu, D. (2001). Carbon nanofibers and single-walled carbon nanotubes prepared by the floating catalyst method. Carbon, 39(3), 329-335. doi:10.1016/s0008-6223(00)00126-3 | es_ES |
dc.description.references | Kirstein, A. F., & Woolley, R. M. (1967). Symmetrical bending of thin circular elastic plates on equally spaced point supports. Journal of Research of the National Bureau of Standards, Section C: Engineering and Instrumentation, 71C(1), 1. doi:10.6028/jres.071c.002 | es_ES |
dc.description.references | STM Annual Book of Standards 1996 | es_ES |
dc.description.references | ANSTIS, G. R., CHANTIKUL, P., LAWN, B. R., & MARSHALL, D. B. (1981). A Critical Evaluation of Indentation Techniques for Measuring Fracture Toughness: I, Direct Crack Measurements. Journal of the American Ceramic Society, 64(9), 533-538. doi:10.1111/j.1151-2916.1981.tb10320.x | es_ES |
dc.description.references | Borrell, A., Fernández, A., Merino, C., & Torrecillas, R. (2010). High density carbon materials obtained at relatively low temperature by spark plasma sintering of carbon nanofibers. International Journal of Materials Research, 101(1), 112-116. doi:10.3139/146.110246 | es_ES |
dc.description.references | Yamamoto, G., Omori, M., Hashida, T., & Kimura, H. (2008). A novel structure for carbon nanotube reinforced alumina composites with improved mechanical properties. Nanotechnology, 19(31), 315708. doi:10.1088/0957-4484/19/31/315708 | es_ES |
dc.description.references | Maensiri, S., Laokul, P., Klinkaewnarong, J., & Amornkitbamrung, V. (2007). Carbon nanofiber-reinforced alumina nanocomposites: Fabrication and mechanical properties. Materials Science and Engineering: A, 447(1-2), 44-50. doi:10.1016/j.msea.2006.08.009 | es_ES |
dc.description.references | Hirota, K., Takaura, Y., Kato, M., & Miyamoto, Y. (2007). Fabrication of carbon nanofiber(CNF)-dispersed Al2O3 composites by pulsed electric-current pressure sintering and their mechanical and electrical properties. Journal of Materials Science, 42(13), 4792-4800. doi:10.1007/s10853-006-0830-0 | es_ES |
dc.description.references | Borrell, A., Rocha, V. G., Torrecillas, R., & Fernández, A. (2011). Surface coating on carbon nanofibers with alumina precursor by different synthesis routes. Composites Science and Technology, 71(1), 18-22. doi:10.1016/j.compscitech.2010.09.011 | es_ES |
dc.description.references | Hall, E. O. (1951). The Deformation and Ageing of Mild Steel: III Discussion of Results. Proceedings of the Physical Society. Section B, 64(9), 747-753. doi:10.1088/0370-1301/64/9/303 | es_ES |
dc.description.references | www.schunk.pt/PT/catalogos/Placasbipolares Schunk_parapilhasdecombustivel.pdf 2009 | es_ES |
dc.description.references | www.sglgroup.com/cms/international/products/product-groups/eg/ sigracetbipolar plates/index.html?locale=en 2009 | es_ES |
dc.description.references | Wolf, H., & Willert-Porada, M. (2006). Electrically conductive LCP–carbon composite with low carbon content for bipolar plate application in polymer electrolyte membrane fuel cell. Journal of Power Sources, 153(1), 41-46. doi:10.1016/j.jpowsour.2005.03.182 | es_ES |