Mostrar el registro sencillo del ítem
dc.contributor.author | Laude, Vincent | es_ES |
dc.contributor.author | Beugnot, J.C. | es_ES |
dc.contributor.author | Benchabane, S. | es_ES |
dc.contributor.author | Pennec, Y. | es_ES |
dc.contributor.author | Djafari-Rouhani, B. | es_ES |
dc.contributor.author | Papanikolaou, Nikos | es_ES |
dc.contributor.author | Escalante Fernández, José María | es_ES |
dc.contributor.author | Martínez Abietar, Alejandro José | es_ES |
dc.date.accessioned | 2013-07-12T06:42:20Z | |
dc.date.available | 2013-07-12T06:42:20Z | |
dc.date.issued | 2011 | |
dc.identifier.issn | 1094-4087 | |
dc.identifier.uri | http://hdl.handle.net/10251/31052 | |
dc.description | This paper was published in OPTICS EXPRESS and is made available as an electronic reprint with the permission of OSA. The paper can be found at the following URL on the OSA website: http://dx.doi.org/10.1364/OE.19.009690. Systematic or multiple reproduction or distribution to multiple locations via electronic or other means is prohibited and is subject to penalties under law | es_ES |
dc.description.abstract | [EN] We demonstrate theoretically that photons and acoustic phonons can be simultaneously guided and slowed down in specially designed nanostructures. Phoxonic crystal waveguides presenting simultaneous phononic and photonic band gaps were designed in perforated silicon membranes that can be conveniently obtained using silicon-on-insulator technology. Geometrical parameters for simultaneous photonic and phononic band gaps were first chosen for optical wavelengths around 1550 nm, based on the finite element analysis of a perfect phoxonic crystal of circular holes. A plain core waveguide was then defined, and simultaneous slow light and elastic guided modes were identified for some waveguide width. Joint guidance of light and elastic waves is predicted with group velocities as low as c/25 and 180 m/s, respectively. © 2011 Optical Society of America. | es_ES |
dc.description.sponsorship | This research has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement number 233883 (TAILPHOX). | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Optical Society of America | es_ES |
dc.relation.ispartof | Optics Express | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | 1550 nm | es_ES |
dc.subject | Acoustic phonons | es_ES |
dc.subject | Circular holes | es_ES |
dc.subject | Crystal slab | es_ES |
dc.subject | Crystal waveguides | es_ES |
dc.subject | Finite element analysis | es_ES |
dc.subject | Geometrical parameters | es_ES |
dc.subject | Group velocities | es_ES |
dc.subject | Guided modes | es_ES |
dc.subject | Optical wavelength | es_ES |
dc.subject | Phononic band gaps | es_ES |
dc.subject | Silicon membranes | es_ES |
dc.subject | Silicon on insulator | es_ES |
dc.subject | Slow photons | es_ES |
dc.subject | Electromagnetic wave emission | es_ES |
dc.subject | Energy gap | es_ES |
dc.subject | Finite element method | es_ES |
dc.subject | Light | es_ES |
dc.subject | Phonons | es_ES |
dc.subject | Photonic band gap | es_ES |
dc.subject | Photons | es_ES |
dc.subject | Slow light | es_ES |
dc.subject | Waveguides | es_ES |
dc.subject | Silicon on insulator technology | es_ES |
dc.subject.classification | TEORIA DE LA SEÑAL Y COMUNICACIONES | es_ES |
dc.title | Simultaneous guidance of slow photons and slow acoustic phonons in silicon phoxonic crystal slabs | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1364/OE.19.009690 | |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/FP7/233883/EU/TAILoring photon-phonon interaction in silicon PHOXonic crystals/ | en_EN |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions | es_ES |
dc.description.bibliographicCitation | Laude, V.; Beugnot, J.; Benchabane, S.; Pennec, Y.; Djafari-Rouhani, B.; Papanikolaou, N.; Escalante Fernández, JM.... (2011). Simultaneous guidance of slow photons and slow acoustic phonons in silicon phoxonic crystal slabs. Optics Express. 19(10):9690-9698. https://doi.org/10.1364/OE.19.009690 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1364/OE.19.009690 | es_ES |
dc.description.upvformatpinicio | 9690 | es_ES |
dc.description.upvformatpfin | 9698 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 19 | es_ES |
dc.description.issue | 10 | es_ES |
dc.relation.senia | 210551 | |
dc.contributor.funder | European Commission | |
dc.description.references | Kushwaha, M. S., Halevi, P., Dobrzynski, L., & Djafari-Rouhani, B. (1993). Acoustic band structure of periodic elastic composites. Physical Review Letters, 71(13), 2022-2025. doi:10.1103/physrevlett.71.2022 | es_ES |
dc.description.references | Maldovan, M., & Thomas, E. L. (2006). Simultaneous localization of photons and phonons in two-dimensional periodic structures. Applied Physics Letters, 88(25), 251907. doi:10.1063/1.2216885 | es_ES |
dc.description.references | Maldovan, M., & Thomas, E. L. (2006). Simultaneous complete elastic and electromagnetic band gaps in periodic structures. Applied Physics B, 83(4), 595-600. doi:10.1007/s00340-006-2241-y | es_ES |
dc.description.references | Akimov, A. V., Tanaka, Y., Pevtsov, A. B., Kaplan, S. F., Golubev, V. G., Tamura, S., … Bayer, M. (2008). Hypersonic Modulation of Light in Three-Dimensional Photonic and Phononic Band-Gap Materials. Physical Review Letters, 101(3). doi:10.1103/physrevlett.101.033902 | es_ES |
dc.description.references | Sadat-Saleh, S., Benchabane, S., Baida, F. I., Bernal, M.-P., & Laude, V. (2009). Tailoring simultaneous photonic and phononic band gaps. Journal of Applied Physics, 106(7), 074912. doi:10.1063/1.3243276 | es_ES |
dc.description.references | Papanikolaou, N., Psarobas, I. E., & Stefanou, N. (2010). Absolute spectral gaps for infrared light and hypersound in three-dimensional metallodielectric phoxonic crystals. Applied Physics Letters, 96(23), 231917. doi:10.1063/1.3453448 | es_ES |
dc.description.references | Mohammadi, S., Eftekhar, A. A., Khelif, A., & Adibi, A. (2010). Simultaneous two-dimensional phononic and photonic band gaps in opto-mechanical crystal slabs. Optics Express, 18(9), 9164. doi:10.1364/oe.18.009164 | es_ES |
dc.description.references | Pennec, Y., Rouhani, B. D., El Boudouti, E. H., Li, C., El Hassouani, Y., Vasseur, J. O., … Martinez, A. (2010). Simultaneous existence of phononic and photonic band gaps in periodic crystal slabs. Optics Express, 18(13), 14301. doi:10.1364/oe.18.014301 | es_ES |
dc.description.references | Safavi-Naeini, A. H., & Painter, O. (2010). Design of optomechanical cavities and waveguides on a simultaneous bandgap phononic-photonic crystal slab. Optics Express, 18(14), 14926. doi:10.1364/oe.18.014926 | es_ES |
dc.description.references | El Hassouani, Y., Li, C., Pennec, Y., El Boudouti, E. H., Larabi, H., Akjouj, A., … Djafari Rouhani, B. (2010). Dual phononic and photonic band gaps in a periodic array of pillars deposited on a thin plate. Physical Review B, 82(15). doi:10.1103/physrevb.82.155405 | es_ES |
dc.description.references | Khelif, A., Aoubiza, B., Mohammadi, S., Adibi, A., & Laude, V. (2006). Complete band gaps in two-dimensional phononic crystal slabs. Physical Review E, 74(4). doi:10.1103/physreve.74.046610 | es_ES |
dc.description.references | Hussein, M. I. (2009). Reduced Bloch mode expansion for periodic media band structure calculations. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 465(2109), 2825-2848. doi:10.1098/rspa.2008.0471 | es_ES |
dc.description.references | Johnson, S. G., Fan, S., Villeneuve, P. R., Joannopoulos, J. D., & Kolodziejski, L. A. (1999). Guided modes in photonic crystal slabs. Physical Review B, 60(8), 5751-5758. doi:10.1103/physrevb.60.5751 | es_ES |
dc.description.references | Xu, T., Wheeler, M. S., Nair, S. V., Ruda, H. E., Mojahedi, M., & Aitchison, J. S. (2008). Highly confined mode above the light line in a two-dimensional photonic crystal slab. Applied Physics Letters, 93(24), 241105. doi:10.1063/1.3046124 | es_ES |
dc.description.references | Laude, V., Achaoui, Y., Benchabane, S., & Khelif, A. (2009). Evanescent Bloch waves and the complex band structure of phononic crystals. Physical Review B, 80(9). doi:10.1103/physrevb.80.092301 | es_ES |
dc.description.references | Laude, V., Khelif, A., Benchabane, S., Wilm, M., Sylvestre, T., Kibler, B., … Maillotte, H. (2005). Phononic band-gap guidance of acoustic modes in photonic crystal fibers. Physical Review B, 71(4). doi:10.1103/physrevb.71.045107 | es_ES |
dc.description.references | Dainese, P., Russell, P. S. J., Joly, N., Knight, J. C., Wiederhecker, G. S., Fragnito, H. L., … Khelif, A. (2006). Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibres. Nature Physics, 2(6), 388-392. doi:10.1038/nphys315 | es_ES |
dc.relation.references | 10.1103/PhysRevLett.71.2022 | es_ES |
dc.relation.references | 10.1063/1.2216885 | es_ES |
dc.relation.references | 10.1007/s00340-006-2241-y | es_ES |
dc.relation.references | 10.1103/PhysRevLett.101.033902 | es_ES |
dc.relation.references | 10.1063/1.3243276 | es_ES |
dc.relation.references | 10.1063/1.3453448 | es_ES |
dc.relation.references | 10.1364/OE.18.009164 | es_ES |
dc.relation.references | 10.1364/OE.18.014301 | es_ES |
dc.relation.references | 10.1364/OE.18.014926 | es_ES |
dc.relation.references | 10.1103/PhysRevB.82.155405 | es_ES |
dc.relation.references | 10.1103/PhysRevE.74.046610 | es_ES |
dc.relation.references | 10.1098/rspa.2008.0471 | es_ES |
dc.relation.references | 10.1103/PhysRevB.60.5751 | es_ES |
dc.relation.references | 10.1063/1.3046124 | es_ES |
dc.relation.references | 10.1103/PhysRevB.80.092301 | es_ES |
dc.relation.references | 10.1103/PhysRevB.71.045107 | es_ES |
dc.relation.references | 10.1038/nphys315 | es_ES |