Riunet Móvil

Home Versión de escritorio

Simultaneous guidance of slow photons and slow acoustic phonons in silicon phoxonic crystal slabs

Mostrar el registro sencillo del ítem

dc.contributor.author Laude, Vincent es_ES
dc.contributor.author Beugnot, J.C. es_ES
dc.contributor.author Benchabane, S. es_ES
dc.contributor.author Pennec, Y. es_ES
dc.contributor.author Djafari-Rouhani, B. es_ES
dc.contributor.author Papanikolaou, Nikos es_ES
dc.contributor.author Escalante Fernández, José María es_ES
dc.contributor.author Martínez Abietar, Alejandro José es_ES
dc.date.accessioned 2013-07-12T06:42:20Z
dc.date.available 2013-07-12T06:42:20Z
dc.date.issued 2011
dc.identifier.issn 1094-4087
dc.identifier.uri http://hdl.handle.net/10251/31052
dc.description This paper was published in OPTICS EXPRESS and is made available as an electronic reprint with the permission of OSA. The paper can be found at the following URL on the OSA website: http://dx.doi.org/10.1364/OE.19.009690. Systematic or multiple reproduction or distribution to multiple locations via electronic or other means is prohibited and is subject to penalties under law es_ES
dc.description.abstract [EN] We demonstrate theoretically that photons and acoustic phonons can be simultaneously guided and slowed down in specially designed nanostructures. Phoxonic crystal waveguides presenting simultaneous phononic and photonic band gaps were designed in perforated silicon membranes that can be conveniently obtained using silicon-on-insulator technology. Geometrical parameters for simultaneous photonic and phononic band gaps were first chosen for optical wavelengths around 1550 nm, based on the finite element analysis of a perfect phoxonic crystal of circular holes. A plain core waveguide was then defined, and simultaneous slow light and elastic guided modes were identified for some waveguide width. Joint guidance of light and elastic waves is predicted with group velocities as low as c/25 and 180 m/s, respectively. © 2011 Optical Society of America. es_ES
dc.description.sponsorship This research has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement number 233883 (TAILPHOX). en_EN
dc.language Inglés es_ES
dc.publisher Optical Society of America es_ES
dc.relation.ispartof Optics Express es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject 1550 nm es_ES
dc.subject Acoustic phonons es_ES
dc.subject Circular holes es_ES
dc.subject Crystal slab es_ES
dc.subject Crystal waveguides es_ES
dc.subject Finite element analysis es_ES
dc.subject Geometrical parameters es_ES
dc.subject Group velocities es_ES
dc.subject Guided modes es_ES
dc.subject Optical wavelength es_ES
dc.subject Phononic band gaps es_ES
dc.subject Silicon membranes es_ES
dc.subject Silicon on insulator es_ES
dc.subject Slow photons es_ES
dc.subject Electromagnetic wave emission es_ES
dc.subject Energy gap es_ES
dc.subject Finite element method es_ES
dc.subject Light es_ES
dc.subject Phonons es_ES
dc.subject Photonic band gap es_ES
dc.subject Photons es_ES
dc.subject Slow light es_ES
dc.subject Waveguides es_ES
dc.subject Silicon on insulator technology es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title Simultaneous guidance of slow photons and slow acoustic phonons in silicon phoxonic crystal slabs es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1364/OE.19.009690
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/233883/EU/TAILoring photon-phonon interaction in silicon PHOXonic crystals/ en_EN
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.description.bibliographicCitation Laude, V.; Beugnot, J.; Benchabane, S.; Pennec, Y.; Djafari-Rouhani, B.; Papanikolaou, N.; Escalante Fernández, JM.... (2011). Simultaneous guidance of slow photons and slow acoustic phonons in silicon phoxonic crystal slabs. Optics Express. 19(10):9690-9698. https://doi.org/10.1364/OE.19.009690 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1364/OE.19.009690 es_ES
dc.description.upvformatpinicio 9690 es_ES
dc.description.upvformatpfin 9698 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 19 es_ES
dc.description.issue 10 es_ES
dc.relation.senia 210551
dc.contributor.funder European Commission
dc.description.references Kushwaha, M. S., Halevi, P., Dobrzynski, L., & Djafari-Rouhani, B. (1993). Acoustic band structure of periodic elastic composites. Physical Review Letters, 71(13), 2022-2025. doi:10.1103/physrevlett.71.2022 es_ES
dc.description.references Maldovan, M., & Thomas, E. L. (2006). Simultaneous localization of photons and phonons in two-dimensional periodic structures. Applied Physics Letters, 88(25), 251907. doi:10.1063/1.2216885 es_ES
dc.description.references Maldovan, M., & Thomas, E. L. (2006). Simultaneous complete elastic and electromagnetic band gaps in periodic structures. Applied Physics B, 83(4), 595-600. doi:10.1007/s00340-006-2241-y es_ES
dc.description.references Akimov, A. V., Tanaka, Y., Pevtsov, A. B., Kaplan, S. F., Golubev, V. G., Tamura, S., … Bayer, M. (2008). Hypersonic Modulation of Light in Three-Dimensional Photonic and Phononic Band-Gap Materials. Physical Review Letters, 101(3). doi:10.1103/physrevlett.101.033902 es_ES
dc.description.references Sadat-Saleh, S., Benchabane, S., Baida, F. I., Bernal, M.-P., & Laude, V. (2009). Tailoring simultaneous photonic and phononic band gaps. Journal of Applied Physics, 106(7), 074912. doi:10.1063/1.3243276 es_ES
dc.description.references Papanikolaou, N., Psarobas, I. E., & Stefanou, N. (2010). Absolute spectral gaps for infrared light and hypersound in three-dimensional metallodielectric phoxonic crystals. Applied Physics Letters, 96(23), 231917. doi:10.1063/1.3453448 es_ES
dc.description.references Mohammadi, S., Eftekhar, A. A., Khelif, A., & Adibi, A. (2010). Simultaneous two-dimensional phononic and photonic band gaps in opto-mechanical crystal slabs. Optics Express, 18(9), 9164. doi:10.1364/oe.18.009164 es_ES
dc.description.references Pennec, Y., Rouhani, B. D., El Boudouti, E. H., Li, C., El Hassouani, Y., Vasseur, J. O., … Martinez, A. (2010). Simultaneous existence of phononic and photonic band gaps in periodic crystal slabs. Optics Express, 18(13), 14301. doi:10.1364/oe.18.014301 es_ES
dc.description.references Safavi-Naeini, A. H., & Painter, O. (2010). Design of optomechanical cavities and waveguides on a simultaneous bandgap phononic-photonic crystal slab. Optics Express, 18(14), 14926. doi:10.1364/oe.18.014926 es_ES
dc.description.references El Hassouani, Y., Li, C., Pennec, Y., El Boudouti, E. H., Larabi, H., Akjouj, A., … Djafari Rouhani, B. (2010). Dual phononic and photonic band gaps in a periodic array of pillars deposited on a thin plate. Physical Review B, 82(15). doi:10.1103/physrevb.82.155405 es_ES
dc.description.references Khelif, A., Aoubiza, B., Mohammadi, S., Adibi, A., & Laude, V. (2006). Complete band gaps in two-dimensional phononic crystal slabs. Physical Review E, 74(4). doi:10.1103/physreve.74.046610 es_ES
dc.description.references Hussein, M. I. (2009). Reduced Bloch mode expansion for periodic media band structure calculations. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 465(2109), 2825-2848. doi:10.1098/rspa.2008.0471 es_ES
dc.description.references Johnson, S. G., Fan, S., Villeneuve, P. R., Joannopoulos, J. D., & Kolodziejski, L. A. (1999). Guided modes in photonic crystal slabs. Physical Review B, 60(8), 5751-5758. doi:10.1103/physrevb.60.5751 es_ES
dc.description.references Xu, T., Wheeler, M. S., Nair, S. V., Ruda, H. E., Mojahedi, M., & Aitchison, J. S. (2008). Highly confined mode above the light line in a two-dimensional photonic crystal slab. Applied Physics Letters, 93(24), 241105. doi:10.1063/1.3046124 es_ES
dc.description.references Laude, V., Achaoui, Y., Benchabane, S., & Khelif, A. (2009). Evanescent Bloch waves and the complex band structure of phononic crystals. Physical Review B, 80(9). doi:10.1103/physrevb.80.092301 es_ES
dc.description.references Laude, V., Khelif, A., Benchabane, S., Wilm, M., Sylvestre, T., Kibler, B., … Maillotte, H. (2005). Phononic band-gap guidance of acoustic modes in photonic crystal fibers. Physical Review B, 71(4). doi:10.1103/physrevb.71.045107 es_ES
dc.description.references Dainese, P., Russell, P. S. J., Joly, N., Knight, J. C., Wiederhecker, G. S., Fragnito, H. L., … Khelif, A. (2006). Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibres. Nature Physics, 2(6), 388-392. doi:10.1038/nphys315 es_ES
dc.relation.references 10.1103/PhysRevLett.71.2022 es_ES
dc.relation.references 10.1063/1.2216885 es_ES
dc.relation.references 10.1007/s00340-006-2241-y es_ES
dc.relation.references 10.1103/PhysRevLett.101.033902 es_ES
dc.relation.references 10.1063/1.3243276 es_ES
dc.relation.references 10.1063/1.3453448 es_ES
dc.relation.references 10.1364/OE.18.009164 es_ES
dc.relation.references 10.1364/OE.18.014301 es_ES
dc.relation.references 10.1364/OE.18.014926 es_ES
dc.relation.references 10.1103/PhysRevB.82.155405 es_ES
dc.relation.references 10.1103/PhysRevE.74.046610 es_ES
dc.relation.references 10.1098/rspa.2008.0471 es_ES
dc.relation.references 10.1103/PhysRevB.60.5751 es_ES
dc.relation.references 10.1063/1.3046124 es_ES
dc.relation.references 10.1103/PhysRevB.80.092301 es_ES
dc.relation.references 10.1103/PhysRevB.71.045107 es_ES
dc.relation.references 10.1038/nphys315 es_ES


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

 

Tema móvil para Riunet