Riunet Móvil

Home Versión de escritorio

Stochastic hydro-economic modeling for optimal management of agricultural groundwater nitrate pollution under hydraulic conductivity uncertainty

Mostrar el registro sencillo del ítem

dc.contributor.author Peña Haro, Salvador es_ES
dc.contributor.author Pulido-Velazquez, M. es_ES
dc.contributor.author Llopis Albert, Carlos
dc.date.accessioned 2015-02-16T12:44:38Z
dc.date.available 2015-02-16T12:44:38Z
dc.date.issued 2011-08
dc.identifier.issn 1364-8152
dc.identifier.uri http://hdl.handle.net/10251/47135
dc.description.abstract [EN] In decision-making processes, reliability and risk aversion play a decisive role. This paper presents a framework for stochastic optimization of control strategies for groundwater nitrate pollution from agriculture under hydraulic conductivity uncertainty. The main goal is to analyze the influence of uncertainty in the physical parameters of a heterogeneous groundwater diffuse pollution problem on the results of management strategies, and to introduce methods that integrate uncertainty and reliability in order to obtain strategies of spatial allocation of fertilizer use in agriculture. A hydro-economic modeling approach is used for obtaining the allocation of fertilizer reduction that complies with the maximum permissible concentration in groundwater while minimizes agricultural income losses. The model is based upon nonlinear programming and groundwater flow and mass transport numerical simulation, condensed on a pollutant concentration response matrix. The effects of the hydraulic conductivity uncertainty on the allocation of nitrogen reduction among agriculture pollution sources are analyzed using four formulations: Monte Carlo simulation with pre-assumed parameter field, Monte Carlo optimization, stacking management, and mixed-integer stochastic model with predefined reliability. The formulations were tested in an illustrative example for 100 hydraulic conductivity realizations with different variance. The results show a high probability of not meeting the groundwater quality standards when deriving a policy from just a deterministic analysis. To increase the reliability several realizations can be optimized at the same time. By using a mixed-integer stochastic formulation, the desired reliability level of the strategy can be fixed in advance. The approach allows deriving the trade-offs between the reliability of meeting the standard and the net benefits from agricultural production. In a risk-averse decision making, not only the reliability of meeting the standards counts, but also the probability distribution of the maximum pollutant concentrations. A sensitivity analysis was carried out to assess the influence of the variance of the hydraulic conductivity fields on the strategies. The results show that the larger the variance, the greater the range of maximum nitrate concentrations and the worst case (or maximum value) that could be reached for the same level of reliability. © 2011 Elsevier Ltd. es_ES
dc.description.sponsorship The study has been partially supported by the European Community 7th Framework Project GENESIS (226536) on groundwater systems and from the Plan Nacional I+D+I 2008-2011 of the Spanish Ministry of Science and Innovation (subprojects CGL2009-13238-C02-01 and CGL2009-13238-C02-02). The authors thank the anonymous reviewers for their suggestions for improving the paper. en_EN
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Environmental Modelling and Software es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Fertilizer allocation es_ES
dc.subject Groundwater es_ES
dc.subject Nitrates es_ES
dc.subject Optimization es_ES
dc.subject Stochastic management model es_ES
dc.subject Uncertainty es_ES
dc.subject Agricultural productions es_ES
dc.subject Agriculture pollution es_ES
dc.subject Control strategies es_ES
dc.subject Decision making process es_ES
dc.subject Deterministic analysis es_ES
dc.subject Diffuse pollution es_ES
dc.subject Economic modeling es_ES
dc.subject Fertilizer use es_ES
dc.subject Groundwater quality es_ES
dc.subject High probability es_ES
dc.subject Illustrative examples es_ES
dc.subject Management strategies es_ES
dc.subject Mass transport es_ES
dc.subject Maximum permissible concentration es_ES
dc.subject Maximum values es_ES
dc.subject Mixed-integer es_ES
dc.subject Monte Carlo optimization es_ES
dc.subject Monte Carlo Simulation es_ES
dc.subject Nitrate concentration es_ES
dc.subject Nitrate pollution es_ES
dc.subject Nitrogen reduction es_ES
dc.subject Numerical simulation es_ES
dc.subject Optimal management es_ES
dc.subject Physical parameters es_ES
dc.subject Pollutant concentration es_ES
dc.subject Reliability level es_ES
dc.subject Response matrices es_ES
dc.subject Risk aversion es_ES
dc.subject Spatial allocation es_ES
dc.subject Stochastic formulation es_ES
dc.subject Stochastic management es_ES
dc.subject Stochastic optimizations es_ES
dc.subject Worst case es_ES
dc.subject Agriculture es_ES
dc.subject Computer simulation es_ES
dc.subject Decision making es_ES
dc.subject Fertilizers es_ES
dc.subject Groundwater flow es_ES
dc.subject Hydraulic conductivity es_ES
dc.subject Monte Carlo methods es_ES
dc.subject Nonlinear programming es_ES
dc.subject Pollution control es_ES
dc.subject Probability distributions es_ES
dc.subject Quality assurance es_ES
dc.subject Reliability es_ES
dc.subject Sensitivity analysis es_ES
dc.subject Standards es_ES
dc.subject Stochastic models es_ES
dc.subject Stochastic systems es_ES
dc.subject Uncertainty analysis es_ES
dc.subject Water quality es_ES
dc.subject Groundwater pollution es_ES
dc.subject Agricultural practice es_ES
dc.subject Fertilizer application es_ES
dc.subject Mass transfer es_ES
dc.subject Monte Carlo analysis es_ES
dc.subject Nitrate es_ES
dc.subject Stochasticity es_ES
dc.subject.classification INGENIERIA MECANICA es_ES
dc.subject.classification INGENIERIA HIDRAULICA es_ES
dc.title Stochastic hydro-economic modeling for optimal management of agricultural groundwater nitrate pollution under hydraulic conductivity uncertainty es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.envsoft.2011.02.010
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/226536/EU/Groundwater and dependent Ecosystems: NEw Scientific basIS on climate change and land-use impacts for the update of the EU Groundwater Directive/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//CGL2009-13238-C02-01/ES/Generación y simulación de escenarios futuros de hidrología superficial y subterránea (GESHYDRO)/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//CGL2009-13238-C02-02/ES/Modelos hidroeconómicos para adaptar la gestión de sistemas de recursos hídricos al cambio climático (HYDROECOCLIMATE)/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería del Diseño - Escola Tècnica Superior d'Enginyeria del Disseny es_ES
dc.description.bibliographicCitation Peña Haro, S.; Pulido-Velazquez, M.; Llopis Albert, C. (2011). Stochastic hydro-economic modeling for optimal management of agricultural groundwater nitrate pollution under hydraulic conductivity uncertainty. Environmental Modelling and Software. 26(8):999-1008. https://doi.org/10.1016/j.envsoft.2011.02.010 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1016/j.envsoft.2011.02.010 es_ES
dc.description.upvformatpinicio 999 es_ES
dc.description.upvformatpfin 1008 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 26 es_ES
dc.description.issue 8 es_ES
dc.relation.senia 219423
dc.contributor.funder European Commission
dc.contributor.funder Ministerio de Ciencia e Innovación


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

 

Tema móvil para Riunet