Mostrar el registro sencillo del ítem
dc.contributor.author | Llopis Albert, Carlos | es_ES |
dc.contributor.author | Palacios Marqués, Daniel | es_ES |
dc.contributor.author | Merigó, José M. | es_ES |
dc.date.accessioned | 2016-02-01T08:55:03Z | |
dc.date.available | 2016-02-01T08:55:03Z | |
dc.date.issued | 2014-04-16 | |
dc.identifier.issn | 0022-1694 | |
dc.identifier.uri | http://hdl.handle.net/10251/60407 | |
dc.description.abstract | In this paper a methodology for the stochastic management of groundwater quality problems is presented, which can be used to provide agricultural advisory services. A stochastic algorithm to solve the coupled flow and mass transport inverse problem is combined with a stochastic management approach to develop methods for integrating uncertainty; thus obtaining more reliable policies on groundwater nitrate pollution control from agriculture. The stochastic inverse model allows identifying non-Gaussian parameters and reducing uncertainty in heterogeneous aquifers by constraining stochastic simulations to data. The management model determines the spatial and temporal distribution of fertilizer application rates that maximizes net benefits in agriculture constrained by quality requirements in groundwater at various control sites. The quality constraints can be taken, for instance, by those given by water laws such as the EU Water Framework Directive (WFD). Furthermore, the methodology allows providing the trade-off between higher economic returns and reliability in meeting the environmental standards. Therefore, this new technology can help stakeholders in the decision-making process under an uncertainty environment. The methodology has been successfully applied to a 2D synthetic aquifer, where an uncertainty assessment has been carried out by means of Monte Carlo simulation techniques. (c) 2014 Elsevier B.V. All rights reserved. | es_ES |
dc.language | Español | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Journal of Hydrology | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Stochastic inversion | es_ES |
dc.subject | Gradual deformation | es_ES |
dc.subject | Non-Gaussian | es_ES |
dc.subject | Nitrate pollution | es_ES |
dc.subject | Fertilizer standards | es_ES |
dc.subject | Optimization | es_ES |
dc.subject.classification | ORGANIZACION DE EMPRESAS | es_ES |
dc.subject.classification | INGENIERIA MECANICA | es_ES |
dc.title | A coupled stochastic inverse-management framework for dealing with nonpoint agriculture pollution under groundwater parameter uncertainty | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.jhydrol.2014.01.021 | |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería del Diseño - Escola Tècnica Superior d'Enginyeria del Disseny | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Organización de Empresas - Departament d'Organització d'Empreses | es_ES |
dc.description.bibliographicCitation | Llopis Albert, C.; Palacios Marqués, D.; Merigó, JM. (2014). A coupled stochastic inverse-management framework for dealing with nonpoint agriculture pollution under groundwater parameter uncertainty. Journal of Hydrology. 511:10-16. doi:10.1016/j.jhydrol.2014.01.021 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1016/j.jhydrol.2014.01.021 | es_ES |
dc.description.upvformatpinicio | 10 | es_ES |
dc.description.upvformatpfin | 16 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 511 | es_ES |
dc.relation.senia | 281846 | es_ES |