Mostrar el registro sencillo del ítem
dc.contributor.author | Barredo Damas, Sergio | es_ES |
dc.contributor.author | Alcaina Miranda, María Isabel | es_ES |
dc.contributor.author | Iborra Clar, María Isabel | es_ES |
dc.contributor.author | Mendoza Roca, José Antonio | es_ES |
dc.contributor.author | Gemma, Matteo | es_ES |
dc.date.accessioned | 2016-10-04T12:28:12Z | |
dc.date.available | 2016-10-04T12:28:12Z | |
dc.date.issued | 2011-03 | |
dc.identifier.issn | 1944-3994 | |
dc.identifier.uri | http://hdl.handle.net/10251/71122 | |
dc.description.abstract | Textile industries are considered as one of the most polluting among all the industrial sectors. Therefore, the disposal of textile effluents without the appropriate treatment entails high environmental risks. Moreover, and due to water shortage situations, industries are becoming aware of the need for investing in innovative treatment technologies for water reclamation, such as membrane filtration. This work studies the performance of three commercial ceramic ultrafiltration membranes treating raw effluents from a textile mill. The effect of both pH and molecular weight cut-off (MWCO) on membrane performance was determined while working on concentration mode. Results showed a noticeable influence of both pH and MWCO on process performance. The best results were obtained for the lowest pH tested (8). At higher pH values, higher fouling rates were achieved. On the other hand, higher fluxes were obtained as MWCO was increased but simultaneously, higher rates of membrane fouling were also observed. Permeate flux rate decreased as the feed solution was concentrated. However, this drop was more noticeable for the lower VRF values. The best overall results were obtained for the 50 kDa membrane operating at pH 8. TOC and COD removals up to 67% and 80%, respectively, were reached at these conditions. In the same way, nearly complete color and turbidity removals were achieved for all the membranes and operating conditions studied. Regarding these results, the combined process of MF/UF has been proven to be a feasible pre-treatment in order to reduce wastewater volume and produce a permeate of enough quality to be used as influent in the NF/RO stage. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Taylor & Francis | es_ES |
dc.relation.ispartof | Desalination and Water Treatment | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Ceramic membranes | es_ES |
dc.subject | Textile wastewater | es_ES |
dc.subject | Ultrafiltration | es_ES |
dc.subject | Water reclamation | es_ES |
dc.subject.classification | INGENIERIA QUIMICA | es_ES |
dc.title | Effect of pH and MWCO on textile effluents ultrafiltration by tubular ceramic membranes | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.5004/dwt.2011.2057 | |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear | es_ES |
dc.description.bibliographicCitation | Barredo Damas, S.; Alcaina Miranda, MI.; Iborra Clar, MI.; Mendoza Roca, JA.; Gemma, M. (2011). Effect of pH and MWCO on textile effluents ultrafiltration by tubular ceramic membranes. Desalination and Water Treatment. 27(1-3):81-89. doi:10.5004/dwt.2011.2057 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.5004/dwt.2011.2057 | es_ES |
dc.description.upvformatpinicio | 81 | es_ES |
dc.description.upvformatpfin | 89 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 27 | es_ES |
dc.description.issue | 1-3 | es_ES |
dc.relation.senia | 215860 | es_ES |
dc.description.references | Allègre, C., Moulin, P., Maisseu, M., & Charbit, F. (2006). Treatment and reuse of reactive dyeing effluents. Journal of Membrane Science, 269(1-2), 15-34. doi:10.1016/j.memsci.2005.06.014 | es_ES |
dc.description.references | Amar, N. B., Kechaou, N., Palmeri, J., Deratani, A., & Sghaier, A. (2009). Comparison of tertiary treatment by nanofiltration and reverse osmosis for water reuse in denim textile industry. Journal of Hazardous Materials, 170(1), 111-117. doi:10.1016/j.jhazmat.2009.04.130 | es_ES |
dc.description.references | Wijetunga, S., Li, X.-F., & Jian, C. (2010). Effect of organic load on decolourization of textile wastewater containing acid dyes in upflow anaerobic sludge blanket reactor. Journal of Hazardous Materials, 177(1-3), 792-798. doi:10.1016/j.jhazmat.2009.12.103 | es_ES |
dc.description.references | Capar, G., Yilmaz, L., & Yetis, U. (2008). A membrane-based co-treatment strategy for the recovery of print- and beck-dyeing textile effluents. Journal of Hazardous Materials, 152(1), 316-323. doi:10.1016/j.jhazmat.2007.06.100 | es_ES |
dc.description.references | Nora’aini, A., Norhidayah, A., & Jusoh, A. (2009). The role of reaction time in organic phase on the preparation of thin-film composite nanofiltration (TFC-NF) membrane for dye removal. Desalination and Water Treatment, 10(1-3), 181-191. doi:10.5004/dwt.2009.868 | es_ES |
dc.description.references | Fersi, C., & Dhahbi, M. (2008). Treatment of textile plant effluent by ultrafiltration and/or nanofiltration for water reuse. Desalination, 222(1-3), 263-271. doi:10.1016/j.desal.2007.01.171 | es_ES |
dc.description.references | Koyuncu, I., & Topacik, D. (2003). Effects of operating conditions on the salt rejection of nanofiltration membranes in reactive dye/salt mixtures. Separation and Purification Technology, 33(3), 283-294. doi:10.1016/s1383-5866(03)00088-1 | es_ES |
dc.description.references | Van der Bruggen, B., Boussu, K., De Vreese, I., Van Baelen, G., Willemse, F., Goedemé, D., & Colen, W. (2005). Industrial process water recycling: Principles and examples. Environmental Progress, 24(4), 417-425. doi:10.1002/ep.10112 | es_ES |
dc.description.references | Lobo, A., Cambiella, Á., Benito, J. M., Pazos, C., & Coca, J. (2006). Ultrafiltration of oil-in-water emulsions with ceramic membranes: Influence of pH and crossflow velocity. Journal of Membrane Science, 278(1-2), 328-334. doi:10.1016/j.memsci.2005.11.016 | es_ES |
dc.description.references | Almécija, M. C., Ibáñez, R., Guadix, A., & Guadix, E. M. (2007). Effect of pH on the fractionation of whey proteins with a ceramic ultrafiltration membrane. Journal of Membrane Science, 288(1-2), 28-35. doi:10.1016/j.memsci.2006.10.021 | es_ES |
dc.description.references | He, Y., Li, G., Wang, H., Zhao, J., Su, H., & Huang, Q. (2008). Effect of operating conditions on separation performance of reactive dye solution with membrane process. Journal of Membrane Science, 321(2), 183-189. doi:10.1016/j.memsci.2008.04.056 | es_ES |
dc.description.references | Majewska-Nowak, K. M. (2010). Application of ceramic membranes for the separation of dye particles. Desalination, 254(1-3), 185-191. doi:10.1016/j.desal.2009.11.026 | es_ES |
dc.description.references | Jin, L., Ng, H. Y., & Ong, S. L. (2009). Performance and fouling characteristics of different pore-sized submerged ceramic membrane bioreactors (SCMBR). Water Science and Technology, 59(11), 2213-2218. doi:10.2166/wst.2009.256 | es_ES |
dc.description.references | Barredo-Damas, S., Alcaina-Miranda, M. I., Bes-Piá, A., Iborra-Clar, M. I., Iborra-Clar, A., & Mendoza-Roca, J. A. (2010). Ceramic membrane behavior in textile wastewater ultrafiltration. Desalination, 250(2), 623-628. doi:10.1016/j.desal.2009.09.037 | es_ES |
dc.description.references | Ricq, L., Pierre, A., Reggiani, J.-C., Zaragoza-Piqueras, S., Pagetti, J., & Daufin, G. (1996). Effects of proteins on electrokinetic properties of inorganic membranes during ultra- and micro-filtration. Journal of Membrane Science, 114(1), 27-38. doi:10.1016/0376-7388(95)00248-0 | es_ES |
dc.description.references | Narong, P., & James, A. E. (2006). Sodium chloride rejection by a UF ceramic membrane in relation to its surface electrical properties. Separation and Purification Technology, 49(2), 122-129. doi:10.1016/j.seppur.2005.09.005 | es_ES |
dc.description.references | Bernat, X., Pihlajamäki, A., Fortuny, A., Bengoa, C., Stüber, F., Fabregat, A., … Font, J. (2009). Non-enhanced ultrafiltration of iron(III) with commercial ceramic membranes. Journal of Membrane Science, 334(1-2), 129-137. doi:10.1016/j.memsci.2009.02.024 | es_ES |
dc.description.references | Kim, J.-O., Kim, S.-K., & Kim, R.-H. (2005). Filtration performance of ceramic membrane for the recovery of volatile fatty acids from liquid organic sludge. Desalination, 172(2), 119-127. doi:10.1016/j.desal.2004.06.199 | es_ES |
dc.description.references | ZHAO, Y., XING, W., XU, N., & WONG, F. (2005). Effects of inorganic salt on ceramic membrane microfiltration of titanium dioxide suspension. Journal of Membrane Science, 254(1-2), 81-88. doi:10.1016/j.memsci.2004.11.032 | es_ES |
dc.description.references | Fernández, E., Benito, J. M., Pazos, C., & Coca, J. (2005). Ceramic membrane ultrafiltration of anionic and nonionic surfactant solutions. Journal of Membrane Science, 246(1), 1-6. doi:10.1016/j.memsci.2004.04.007 | es_ES |
dc.description.references | Byhlin, H., & Jönsson, A.-S. (2003). Influence of adsorption and concentration polarisation on membrane performance during ultrafiltration of a non-ionic surfactant. Desalination, 151(1), 21-31. doi:10.1016/s0011-9164(02)00969-4 | es_ES |
dc.description.references | Faibish, R. S., & Cohen, Y. (2001). Fouling and rejection behavior of ceramic and polymer-modified ceramic membranes for ultrafiltration of oil-in-water emulsions and microemulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 191(1-2), 27-40. doi:10.1016/s0927-7757(01)00761-0 | es_ES |
dc.description.references | Žabková, M., da Silva, E. A. B., & Rodrigues, A. E. (2007). Recovery of vanillin from lignin/vanillin mixture by using tubular ceramic ultrafiltration membranes. Journal of Membrane Science, 301(1-2), 221-237. doi:10.1016/j.memsci.2007.06.025 | es_ES |
dc.description.references | Xu, N., Zhao, Y., Zhong, J., & Shi, J. (2002). Crossflow Microfiltration of Micro-Sized Mineral Suspensions Using Ceramic Membranes. Chemical Engineering Research and Design, 80(2), 215-221. doi:10.1205/026387602753501951 | es_ES |
dc.description.references | Li, M., Zhao, Y., Zhou, S., Xing, W., & Wong, F.-S. (2007). Resistance analysis for ceramic membrane microfiltration of raw soy sauce. Journal of Membrane Science, 299(1-2), 122-129. doi:10.1016/j.memsci.2007.04.033 | es_ES |
dc.description.references | Lin, C.-F., Yu-Chen Lin, A., Sri Chandana, P., & Tsai, C.-Y. (2009). Effects of mass retention of dissolved organic matter and membrane pore size on membrane fouling and flux decline. Water Research, 43(2), 389-394. doi:10.1016/j.watres.2008.10.042 | es_ES |
dc.description.references | Li, M., Zhao, Y., Zhou, S., & Xing, W. (2010). Clarification of raw rice wine by ceramic microfiltration membranes and membrane fouling analysis. Desalination, 256(1-3), 166-173. doi:10.1016/j.desal.2010.01.018 | es_ES |
dc.description.references | Gadelle, F., Koros, W. J., & Schechter, R. S. (1996). Ultrafiltration of Surfactant and Aromatic/Surfactant Solutions Using Ceramic Membranes. Industrial & Engineering Chemistry Research, 35(10), 3687-3696. doi:10.1021/ie9507181 | es_ES |
dc.relation.references | 10.1016/j.memsci.2005.06.014 | es_ES |
dc.relation.references | 10.1016/j.jhazmat.2009.04.130 | es_ES |
dc.relation.references | 10.1016/j.jhazmat.2009.12.103 | es_ES |
dc.relation.references | 10.1016/j.jhazmat.2007.06.100 | es_ES |
dc.relation.references | 10.5004/dwt.2009.868 | es_ES |
dc.relation.references | 10.1016/j.desal.2007.01.171 | es_ES |
dc.relation.references | 10.1002/(SICI)1097-4660(199808)72:4<289::AID-JCTB905>3.0.CO;2-# | es_ES |
dc.relation.references | 10.1016/S1383-5866(03)00088-1 | es_ES |
dc.relation.references | 10.1002/ep.10112 | es_ES |
dc.relation.references | 10.1016/j.memsci.2005.11.016 | es_ES |
dc.relation.references | 10.1016/j.memsci.2006.10.021 | es_ES |
dc.relation.references | 10.1016/j.memsci.2008.04.056 | es_ES |
dc.relation.references | 10.1016/j.desal.2009.11.026 | es_ES |
dc.relation.references | 10.2166/wst.2009.256 | es_ES |
dc.relation.references | 10.1016/j.desal.2009.09.037 | es_ES |
dc.relation.references | 10.1016/0376-7388(95)00248-0 | es_ES |
dc.relation.references | 10.1016/j.seppur.2005.09.005 | es_ES |
dc.relation.references | 10.1016/j.memsci.2009.02.024 | es_ES |
dc.relation.references | 10.1016/j.desal.2004.06.199 | es_ES |
dc.relation.references | 10.1016/j.memsci.2004.11.032 | es_ES |
dc.relation.references | 10.1016/j.memsci.2004.04.007 | es_ES |
dc.relation.references | 10.1016/S0011-9164(02)00969-4 | es_ES |
dc.relation.references | 10.1016/S0927-7757(01)00761-0 | es_ES |
dc.relation.references | 10.1016/j.memsci.2007.06.025 | es_ES |
dc.relation.references | 10.1205/026387602753501951 | es_ES |
dc.relation.references | 10.1016/j.memsci.2007.04.033 | es_ES |
dc.relation.references | 10.1016/j.watres.2008.10.042 | es_ES |
dc.relation.references | 10.1016/j.desal.2010.01.018 | es_ES |
dc.relation.references | 10.1021/ie9507181 | es_ES |