Mostrar el registro sencillo del ítem
dc.contributor.author | Serna Farfan, José Luis![]() |
es_ES |
dc.contributor.author | Muñoz, José Francisco![]() |
es_ES |
dc.contributor.author | Suárez, Francisco![]() |
es_ES |
dc.date.accessioned | 2017-10-25T06:35:30Z | |
dc.date.available | 2017-10-25T06:35:30Z | |
dc.date.issued | 2017-07-27 | |
dc.identifier.issn | 1134-2196 | |
dc.identifier.uri | http://hdl.handle.net/10251/89970 | |
dc.description.abstract | [EN] In recent years, fiber-optic distributed temperature sensing (FO-DTS) methods have been successfully used to investigate a wide range of hydrological applications. In particular, two methods have been developed to monitor the soil water content (θ) with the FO-DTS technology: the passive and the active methods. This work presents an assessment of the active method to determine the θ of a sandy soil. In this method, fiber-optic cables with metallic armoring are used and a voltage difference is applied between the two ends of the cable to warm it during a specified time period. Then, an empirical relationship is used to relate θ with a parameter called cumulative temperature (Tcum). To apply the active method, we propose a potential relationship defined by stretches, which depends on the hydrodynamic properties of the soil studied. Different experiments were carried out to assess the active method. These experiments had different heat pulse durations (2, 5, 10 and 20 min with electrical powers of 2.1, 2.6, 2.3 and 2.4 W/m, respectively), and allowed determining the optimum heat pulse duration (tf), the optimum temporal integration interval (∆t), the optimum final time of integration (t0) used in the calculation of the cumulative temperature, and the optimum current (I) that should circulate through the fiber-optic cable to generate the heat pulse. Results show that the optimum operating parameters are: tf = 1200 s ∆t = 150 s, t0 = tf, and I ≈ 17 A (2.43 W/m). Our analysis allowed obtaining volumetric water contents ranging from 0.14 to 0.46 m3/m3, with errors that are smaller than 0.08 m3/m3 | es_ES |
dc.description.abstract | [ES] En los últimos años las mediciones distribuidas de temperaturas con cables de fibra óptica (FO-DTS) se han utilizado con éxito para investigar una amplia gama de procesos hidrológicos. En particular, con la tecnología FO-DTS se han desarrollado dos métodos para monitorear el contenido de humedad volumétrico en suelos (θ): el método pasivo y el método activo. Este trabajo presenta una evaluación del método activo para determinar el θ de un suelo arenoso. En este método, se utilizan cables de fibra óptica con elementos metálicos, donde se aplica una diferencia de voltaje entre sus extremos para calentarlo durante un período de tiempo determinado. Luego, se utiliza una relación empírica para relacionar el θ con un parámetro denominado temperatura acumulada (Tcum). Para aplicar el método activo se propuso una relación potencial definida por tramos, la cual depende de las propiedades hidrodinámicas del suelo estudiado. Distintos experimentos fueron realizados para evaluar el método activo. Estos experimentos tuvieron distintas duraciones del pulso de calor (2, 5, 10 y 20 min con potencias eléctricas de 2.1, 2.6, 2.3 y 2.4 W/m, respectivamente), y permitieron determinar la duración óptima del pulso de calor (tf), el tiempo de integración óptimo (∆t), el tiempo final óptimo de integración (t0) utilizado en el cálculo de la temperatura acumulada, y la corriente óptima (I) que debe circular por el cable de fibra óptica para generar el pulso de calor. Los resultados revelan que los parámetros óptimos son: tf = 1200 s, ∆t = 150 s, t0 = tf, e I ≈ 17 A (2.4 W/m). Este análisis permitió obtener contenidos de humedad que van desde 0.14 hasta 0.46 m3/m3, con errores menores que 0.08 m3/m3. | es_ES |
dc.description.sponsorship | Este trabajo fue auspiciado por el Proyecto FONDECYT N°1170850 (CONICYT), y por el Programa Nacional de Becas y Crédito Educativo del Perú (PRONABEC). Los autores agradecen a C. Sayde y a S. Tyler por sus sugerencias al inicio del trabajo de investigación. F. Suárez agradece el apoyo del Centro de Desarrollo Urbano Sustentable (CEDEUS-CONICYT/ FONDAP/15110020) y del Centro de Excelencia en Geotermia de los Andes (CEGA-CONICYT/FONDAP/15090013). | |
dc.language | Español | es_ES |
dc.publisher | Universitat Politècnica de València | |
dc.relation.ispartof | Ingeniería del Agua | |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Mediciones distribuidas de temperatura con cables de fibra óptica (FO-DTS) | es_ES |
dc.subject | Método activo | es_ES |
dc.subject | Contenido de humedad volumétrico | es_ES |
dc.subject | Fiber-optic distributed temperature sensing (FO-DTS) | es_ES |
dc.subject | Active method | es_ES |
dc.subject | Volumetric water content | es_ES |
dc.title | Evaluación del método activo para determinar contenidos de humedad en suelos | es_ES |
dc.title.alternative | Assessment of the active method to determine soil moisture | |
dc.type | Artículo | es_ES |
dc.date.updated | 2017-10-25T06:25:08Z | |
dc.identifier.doi | 10.4995/ia.2017.6802 | |
dc.relation.projectID | info:eu-repo/grantAgreement/CONICYT//1170850/ | |
dc.relation.projectID | info:eu-repo/grantAgreement/CEDEUS//15110020/ | |
dc.relation.projectID | info:eu-repo/grantAgreement/CEDEUS//15090013/ | |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Serna Farfan, JL.; Muñoz, JF.; Suárez, F. (2017). Evaluación del método activo para determinar contenidos de humedad en suelos. Ingeniería del Agua. 21(3):165-178. https://doi.org/10.4995/ia.2017.6802 | es_ES |
dc.description.accrualMethod | SWORD | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/ia.2017.6802 | es_ES |
dc.description.upvformatpinicio | 165 | es_ES |
dc.description.upvformatpfin | 178 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 21 | |
dc.description.issue | 3 | |
dc.identifier.eissn | 1886-4996 | |
dc.contributor.funder | Comisión Nacional de Investigación Científica y Tecnológica, Chile | |
dc.contributor.funder | Centro de Desarrollo Urbano Sustentable, Chile | |
dc.description.references | Aufleger, M., Conrad, M., Perzlmaier, S., Porras, P. (2005). "Improving a fiber optics tool for monitoring leakage". Hydro Review Worldwide, 13(4):18-23. | es_ES |
dc.description.references | Benítez-Buelga, J., Rodríguez-Sinobas, L., Sánchez-Calvo, R., Gil-Rodríguez, M., Sayde, C., Selker, J.S. (2016). "Calibration of soil moisture sensing with subsurface heated fiber optics using numerical simulation". Water Resources Research, 52, 2985-2995. https://doi.org/10.1002/2015WR017897 | es_ES |
dc.description.references | Bennett, N. D., Croke, B. F., Guariso, G., Guillaume, J. H., Hamilton, S. H., Jakeman, A. J., & Andreassian, V. (2013). "Characterising performance of environmental models". Environmental Modelling & Software, 40, 1-20. https://doi.org/10.1016/j.envsoft.2012.09.011 | es_ES |
dc.description.references | Black, C. A., Evans, D. D., y Dinauer, R. C. (1965). "Methods of soil analysis". Vol. 9, pp. 653-708. Madison, WI: American Society of Agronomy. | es_ES |
dc.description.references | Cao, D., Shi, B., Zhu, H., Wei, G., Chen, S., Yan, J. (2015). "A distributed measurement method for in-situ soil moisture content by using carbon-fiber heated cable". Journal of Rock Mechanics and Geotechnical Engineering, 7, 700-707. https://doi.org/10.1016/j. | es_ES |
dc.description.references | jrmge.2015.08.003 | es_ES |
dc.description.references | Ciocca, F., I. Luna, N. van de Giesen, and M. B. Parlange (2012). "Heated optical fiber for distributed soil-moisture measurements: A lysimeter experiment". Vadose Zone Journal., 11, 1-10, doi:10.2136/vzj2011.0177. | es_ES |
dc.description.references | Cristi, F., Fierro, V., Suárez, F., Muñoz, J.F., Hausner, M.B. (2016). "A TDR-waveform approach to estimate soil water content in ellectrically conductive soils". Computers and Electronics in Agriculture, 121, 160-168. https://doi.org/10.1016/j.compag.2015.12.004 | es_ES |
dc.description.references | Dong, J., Steele-Dunne, S. C., Ochsner, T. E., & van de Giesen, N. (2016). "Estimating soil moisture and soil thermal and hydraulic properties by assimilating soil temperatures using a particle batch smoother". Advances in Water Resources, 91, 104-116. https://doi. | es_ES |
dc.description.references | org/10.1016/j.advwatres.2016.03.008 | es_ES |
dc.description.references | Entekhabi, D., Rodriguez-Iturbe, I., Castelli, F. (1996). "Mutualinteraction of soil moisture state and atmospheric processes". Journal of Hydrology, 184:3-17. https://doi.org/10.1016/0022-1694(95)02965-6 | es_ES |
dc.description.references | Gil-Rodríguez, M., Rodríguez-Sinobas, L., Benítez-Buelga, J., Sánchez-Calvo, R. (2013). Application of active heat pulse method with fiber optic temperature sensing for estimation of wetting bulbs and water distribution in drip emitters. Agricultural Water Management, 120, 72-78. https://doi.org/10.1016/j.agwat.2012.10.012 | es_ES |
dc.description.references | Klute, A., (1994). Methods of Soil Analysis. Part 1: Physical and Mineralogical Methods. Agronomy Series, vol. 9. American Society of Agronomy, Madison, Wisconsin. | es_ES |
dc.description.references | Kurth, A.-M., Dawes, N., Selker, J., Schirmer, M. (2013). "Autonomous distributed temperature sensing for long-term heated applications in remote areas". Geoscientific Instrumentation Methods and Data Systems, 2, 71-77. https://doi.org/10.5194/gi-2-71-2013 | es_ES |
dc.description.references | Muñoz, O., Gómez, R., Russo, B., & Sánchez, J. C. (2016). Sistema de detección de fugas en tiempo real en presas de materiales sueltos mediante sensores distribuidos en fibra óptica. Ingeniería del agua, 20(2), 103-114. https://doi.org/10.4995/ia.2016.4450 | es_ES |
dc.description.references | Perzlmaier, S., Straßer, K. H., Strobl, T., & Aufleger, M. (2006). "Integral seepage monitoring on open channel embankment dams by the DFOT heat pulsemethod". 22nd ICOLD, Barcelona, Spain. | es_ES |
dc.description.references | Peters, A., & Durner, W. (2008). Simplified evaporation method for determining soil hydraulic properties. Journal of Hydrology, 356(1), 147-162. https://doi.org/10.1016/j.jhydrol.2008.04.016 | es_ES |
dc.description.references | Rowell, D. L. (2014). Soil science: Methods & applications. Routledge. | es_ES |
dc.description.references | Sayde, C., Gregory, C., Gil‐Rodriguez, M., Tufillaro, N., Tyler, S., van de Giesen, N., y Selker, J. S. (2010). "Feasibility of soil moisture monitoring with heated fiber optics". Water Resources Research, 46(6). https://doi.org/10.1029/2009WR007846 | es_ES |
dc.description.references | Sayde, C., J. B. Buelga, L. Rodriguez-Sinobas, L. E. Khoury, M. English, N. van de Giesen, and J. S. Selker (2014). "Mapping variability of soil water content and flux across 1-1000 m scales using the Actively Heated Fiber Optic method" Water Resources Research, 50. https://doi.org/10.1002/2013WR014983 | es_ES |
dc.description.references | Selker, J.S., Thevenaz, L., Huwald, H., Mallet, A., Luxemburg, W., van de Giesen, N.C., Stejskal, M., Zeman, J., Westhoff, M., Parlange, M.B. (2006). "Distributed fiberoptic temperature sensing for hydrologic systems". Water Resources Research, Vol.42, N°.W12202, (2006), 8. https://doi.org/10.1029/2006WR005326 | es_ES |
dc.description.references | Soil Survey Staff. (2014). Keys to Soil Taxonomy, 12th ed. USDA-Natural Resources Conservation Service, Washington, DC. | es_ES |
dc.description.references | Steele-Dunne, S.C., Rutten, M.M., Krzeminska, D.M., Hausner, M.B., Tyler, S.W., Selker, J.S., Bogaard, T.A., van de Giesen, N.C. (2010). "Feasibility of soil moisture estimation using passive distributed temperature sensing". Water Resources Research, 46, W03534. https://doi.org/10.1029/2009WR008272 | es_ES |
dc.description.references | Striegl, A. M., Loheide, I. I., y Steven, P. (2012). "Heated distributed temperature sensing for field scale soil moisture monitoring". Groundwater, 50(3), 340-347. https://doi.org/10.1111/j.1745-6584.2012.00928.x | es_ES |
dc.description.references | Suárez, F., Aravena, J.E., Hausner, M.B., Childress, A.E., Tyler, S.W. (2011a). Assessment of a vertical high-resolution distributed-temperature-sensing system in a shallow thermohaline environment. Hydrology and Earth System Sciences, 15:1081-1093. https://doi.org/10.5194/hess-15-1081-2011 | es_ES |
dc.description.references | Tyler, S.W., Selker, J.S., Hausner, M.B., Hatch, C.E., Torgersen, T., Thodal, C.E., Schladow, S.G. (2009). Environmental temperature sensing using Raman spectra DTS fiber-optic methods. Water Resources Research, 45, W00D23. https://doi.org/10.1029/2008WR007052 | es_ES |
dc.description.references | Weiss, J. D. (2003). "Using fiber optics to detect moisture intrusion into a landfill cap consisting of a vegetative soil barrier". Journal of the Air & Waste Management Association, 53:1130-1148. https://doi.org/10.1080/10473289.2003.10466268 | es_ES |
dc.description.references | van Genuchten, M.T. (1980). A Closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J., 44, 892-898. https://doi.org/10.2136/sssaj1980.03615995004400050002x | es_ES |