Autor: Xu, Sanzhang; Chen, Jianlong; Benítez López, Julio
Resumen: [EN] Let R be a unital ring with involution. We first show that the EP elements in R can be characterized by three equations. Namely, let a. R, then a is EP if and only if there exists x. R such that (xa)* = xa, xa(2) = a and ax(2) = x. Any EP element in R is core invertible and Moore-Penrose invertible. We give more equivalent conditions for a core (Moore-Penrose) invertible element to be an EP element. Finally, any EP element is characterized in terms of the n-EP property, which is a generalization of the bi-EP property.