Riunet Móvil

Home Versión de escritorio

EP Elements in Rings with Involution

Mostrar el registro sencillo del ítem

dc.contributor.author Xu, Sanzhang es_ES
dc.contributor.author Chen, Jianlong es_ES
dc.contributor.author Benítez López, Julio es_ES
dc.date.accessioned 2020-04-06T08:57:40Z
dc.date.available 2020-04-06T08:57:40Z
dc.date.issued 2019-11 es_ES
dc.identifier.issn 0126-6705 es_ES
dc.identifier.uri http://hdl.handle.net/10251/140253
dc.description.abstract [EN] Let R be a unital ring with involution. We first show that the EP elements in R can be characterized by three equations. Namely, let a. R, then a is EP if and only if there exists x. R such that (xa)* = xa, xa(2) = a and ax(2) = x. Any EP element in R is core invertible and Moore-Penrose invertible. We give more equivalent conditions for a core (Moore-Penrose) invertible element to be an EP element. Finally, any EP element is characterized in terms of the n-EP property, which is a generalization of the bi-EP property. es_ES
dc.description.sponsorship This research is supported by the National Natural Science Foundation of China (No. 11771076). The first author is grateful to China Scholarship Council for giving him a purse for his further study in Universitat Politecnica de Valencia, Spain. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Bulletin of the Malaysian Mathematical Sciences Society es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Core inverse es_ES
dc.subject EP es_ES
dc.subject Bi-EP es_ES
dc.subject N-EP es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title EP Elements in Rings with Involution es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s40840-019-00731-x es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NSFC//11771076/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Xu, S.; Chen, J.; Benítez López, J. (2019). EP Elements in Rings with Involution. Bulletin of the Malaysian Mathematical Sciences Society. 42(6):3409-3426. https://doi.org/10.1007/s40840-019-00731-x es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s40840-019-00731-x es_ES
dc.description.upvformatpinicio 3409 es_ES
dc.description.upvformatpfin 3426 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 42 es_ES
dc.description.issue 6 es_ES
dc.relation.pasarela S\389266 es_ES
dc.contributor.funder National Natural Science Foundation of China es_ES
dc.description.references Baksalary, O.M., Trenkler, G.: Core inverse of matrices. Linear Multilinear Algebra 58(6), 681–697 (2010) es_ES
dc.description.references Benítez, J.: Moore–Penrose inverses and commuting elements of $C^{*}$-algebras. J. Math. Anal. Appl. 345(2), 766–770 (2008) es_ES
dc.description.references Bhaskara Rao, K.P.S.: The Theory of Generalized Inverses Over Commutative Rings. Taylor and Francis, London (2002) es_ES
dc.description.references Boasso, E.: On the Moore–Penrose inverse, EP Banach space operators, and EP Banach algebra elements. J. Math. Anal. Appl. 339(2), 1003–1014 (2008) es_ES
dc.description.references Chen, W.X.: On EP elements, normal elements and partial isometries in rings with involution. Electron. J. Linear Algebra 23, 553–561 (2012) es_ES
dc.description.references Drivaliaris, D., Karanasios, S., Pappas, D.: Factorizations of EP operators. Linear Algebra Appl. 429, 1555–1567 (2008) es_ES
dc.description.references Hartwig, R.E.: Block generalized inverses. Arch. Retion. Mech. Anal. 61(3), 197–251 (1976) es_ES
dc.description.references Hartwig, R.E., Spindelböck, K.: Matrices for which $A^*$ and $A^{\dagger }$ commute. Linear Multilinear Algebra 14(3), 241–256 (1983) es_ES
dc.description.references Koliha, J.J., Patrício, P.: Elements of rings with equal spectral idempotents. J. Aust. Math. Soc. 72(1), 137–152 (2002) es_ES
dc.description.references Mosić, D., Djordjević, D.S., Koliha, J.J.: EP elements in rings. Linear Algebra Appl. 431, 527–535 (2009) es_ES
dc.description.references Mosić, D., Djordjević, D.S.: New characterizations of EP, generalized normal and generalized Hermitian elements in rings. Appl. Math. Comput. 218, 6702–6710 (2012) es_ES
dc.description.references Patrício, P., Puystjens, R.: Drazin–Moore–Penrose invertiblity in rings. Linear Algebra Appl. 389, 159–173 (2004) es_ES
dc.description.references Rakić, D.S., Dinčić, Nebojša Č., Djordjević, D.S.: Group, Moore–Penrose, core and dual core inverse in rings with involution. Linear Algebra Appl. 463, 115–133 (2014) es_ES
dc.description.references von Neumann, J.: On regular rings. Proc. Natl. Acad. Sci. USA 22(12), 707–713 (1936) es_ES
dc.relation.references 10.1080/03081080902778222 es_ES
dc.relation.references 10.1016/j.jmaa.2008.04.062 es_ES
dc.relation.references 10.1016/j.jmaa.2007.07.059 es_ES
dc.relation.references 10.1016/j.laa.2008.04.026 es_ES
dc.relation.references 10.1007/BF00281485 es_ES
dc.relation.references 10.1080/03081088308817561 es_ES
dc.relation.references 10.1017/S1446788700003657 es_ES
dc.relation.references 10.1016/j.laa.2009.02.032 es_ES
dc.relation.references 10.1016/j.laa.2004.04.006 es_ES
dc.relation.references 10.1016/j.laa.2014.09.003 es_ES
dc.relation.references 10.1073/pnas.22.12.707 es_ES


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

 

Tema móvil para Riunet