Mostrar el registro sencillo del ítem
dc.contributor.author | Xu, Sanzhang | es_ES |
dc.contributor.author | Chen, Jianlong | es_ES |
dc.contributor.author | Benítez López, Julio | es_ES |
dc.date.accessioned | 2020-04-06T08:57:40Z | |
dc.date.available | 2020-04-06T08:57:40Z | |
dc.date.issued | 2019-11 | es_ES |
dc.identifier.issn | 0126-6705 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/140253 | |
dc.description.abstract | [EN] Let R be a unital ring with involution. We first show that the EP elements in R can be characterized by three equations. Namely, let a. R, then a is EP if and only if there exists x. R such that (xa)* = xa, xa(2) = a and ax(2) = x. Any EP element in R is core invertible and Moore-Penrose invertible. We give more equivalent conditions for a core (Moore-Penrose) invertible element to be an EP element. Finally, any EP element is characterized in terms of the n-EP property, which is a generalization of the bi-EP property. | es_ES |
dc.description.sponsorship | This research is supported by the National Natural Science Foundation of China (No. 11771076). The first author is grateful to China Scholarship Council for giving him a purse for his further study in Universitat Politecnica de Valencia, Spain. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | Bulletin of the Malaysian Mathematical Sciences Society | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Core inverse | es_ES |
dc.subject | EP | es_ES |
dc.subject | Bi-EP | es_ES |
dc.subject | N-EP | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | EP Elements in Rings with Involution | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s40840-019-00731-x | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/NSFC//11771076/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Xu, S.; Chen, J.; Benítez López, J. (2019). EP Elements in Rings with Involution. Bulletin of the Malaysian Mathematical Sciences Society. 42(6):3409-3426. https://doi.org/10.1007/s40840-019-00731-x | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/s40840-019-00731-x | es_ES |
dc.description.upvformatpinicio | 3409 | es_ES |
dc.description.upvformatpfin | 3426 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 42 | es_ES |
dc.description.issue | 6 | es_ES |
dc.relation.pasarela | S\389266 | es_ES |
dc.contributor.funder | National Natural Science Foundation of China | es_ES |
dc.description.references | Baksalary, O.M., Trenkler, G.: Core inverse of matrices. Linear Multilinear Algebra 58(6), 681–697 (2010) | es_ES |
dc.description.references | Benítez, J.: Moore–Penrose inverses and commuting elements of $C^{*}$-algebras. J. Math. Anal. Appl. 345(2), 766–770 (2008) | es_ES |
dc.description.references | Bhaskara Rao, K.P.S.: The Theory of Generalized Inverses Over Commutative Rings. Taylor and Francis, London (2002) | es_ES |
dc.description.references | Boasso, E.: On the Moore–Penrose inverse, EP Banach space operators, and EP Banach algebra elements. J. Math. Anal. Appl. 339(2), 1003–1014 (2008) | es_ES |
dc.description.references | Chen, W.X.: On EP elements, normal elements and partial isometries in rings with involution. Electron. J. Linear Algebra 23, 553–561 (2012) | es_ES |
dc.description.references | Drivaliaris, D., Karanasios, S., Pappas, D.: Factorizations of EP operators. Linear Algebra Appl. 429, 1555–1567 (2008) | es_ES |
dc.description.references | Hartwig, R.E.: Block generalized inverses. Arch. Retion. Mech. Anal. 61(3), 197–251 (1976) | es_ES |
dc.description.references | Hartwig, R.E., Spindelböck, K.: Matrices for which $A^*$ and $A^{\dagger }$ commute. Linear Multilinear Algebra 14(3), 241–256 (1983) | es_ES |
dc.description.references | Koliha, J.J., Patrício, P.: Elements of rings with equal spectral idempotents. J. Aust. Math. Soc. 72(1), 137–152 (2002) | es_ES |
dc.description.references | Mosić, D., Djordjević, D.S., Koliha, J.J.: EP elements in rings. Linear Algebra Appl. 431, 527–535 (2009) | es_ES |
dc.description.references | Mosić, D., Djordjević, D.S.: New characterizations of EP, generalized normal and generalized Hermitian elements in rings. Appl. Math. Comput. 218, 6702–6710 (2012) | es_ES |
dc.description.references | Patrício, P., Puystjens, R.: Drazin–Moore–Penrose invertiblity in rings. Linear Algebra Appl. 389, 159–173 (2004) | es_ES |
dc.description.references | Rakić, D.S., Dinčić, Nebojša Č., Djordjević, D.S.: Group, Moore–Penrose, core and dual core inverse in rings with involution. Linear Algebra Appl. 463, 115–133 (2014) | es_ES |
dc.description.references | von Neumann, J.: On regular rings. Proc. Natl. Acad. Sci. USA 22(12), 707–713 (1936) | es_ES |
dc.relation.references | 10.1080/03081080902778222 | es_ES |
dc.relation.references | 10.1016/j.jmaa.2008.04.062 | es_ES |
dc.relation.references | 10.1016/j.jmaa.2007.07.059 | es_ES |
dc.relation.references | 10.1016/j.laa.2008.04.026 | es_ES |
dc.relation.references | 10.1007/BF00281485 | es_ES |
dc.relation.references | 10.1080/03081088308817561 | es_ES |
dc.relation.references | 10.1017/S1446788700003657 | es_ES |
dc.relation.references | 10.1016/j.laa.2009.02.032 | es_ES |
dc.relation.references | 10.1016/j.laa.2004.04.006 | es_ES |
dc.relation.references | 10.1016/j.laa.2014.09.003 | es_ES |
dc.relation.references | 10.1073/pnas.22.12.707 | es_ES |