Mostrar el registro sencillo del ítem
dc.contributor.author | Bonin-Font, Francisco![]() |
es_ES |
dc.contributor.author | Coll Gomila, Carles![]() |
es_ES |
dc.contributor.author | Oliver Codina, Gabriel![]() |
es_ES |
dc.date.accessioned | 2020-05-15T07:12:24Z | |
dc.date.available | 2020-05-15T07:12:24Z | |
dc.date.issued | 2017-12-05 | |
dc.identifier.issn | 1697-7912 | |
dc.identifier.uri | http://hdl.handle.net/10251/143357 | |
dc.description.abstract | [ES] Este artículo presenta los resultados de un estudio experimental exhaustivo que determina el tipo de características visuales que presentan una mayor robustez, estabilidad y trazabilidad en imágenes submarinas tomadas en entornos colonizados con Posidonia Oceanica (P.O.), sean consecutivas o que cierran bucles (imágenes que muestran una misma área, parcial o totalmente, tomadas en tiempos distintos, desde puntos de vista distintos o incluso en condiciones de iluminación diferentes). El trabajo se ha centrado en dos puntos fundamentales: a) evaluar la capacidad que pueden tener varias técnicas de aumento de contraste en imágenes con P.O. a la hora de aumentar el número y calidad de las características visuales, y b) encontrar la combinación detector/descriptor invariante a rotación y traslación, que maximiza el número de correspondencias inliers usadas posteriormente para el cálculo de la odometria visual, o en el registro de imágenes que cierran bucles. | es_ES |
dc.description.abstract | [EN] This paper presents an exhaustive, extensive and detailed experimental assessment of different types of visual key-points in terms of robustness, stability and traceability, in images taken in marine areas densely colonized with Posidonia Oceanica (P.O.). This work has been focused mainly in two issues: a) evaluating the capacity of several image color and contrast enhancing preprocessing techniques to increase the image quality and the number of stable features, and b) finding the pair feature detector/descriptor, from a wide range of different combinations, that maximizes the number of inlier correspondences in consecutive frames or frames that close a loop (images that overlap, taken at distant time instants, from different viewpoints or even with different environmental conditions). Conclusions extracted from both evaluations will affect directly the quality of visual odometers and/or the image registration processes involved in visual SLAM approaches. | es_ES |
dc.description.sponsorship | Ministerio de Economía y Competitividad a través del proyecto TIN2014- 58662-R y fondos FEDER | es_ES |
dc.language | Español | es_ES |
dc.publisher | Universitat Politècnica de València | es_ES |
dc.relation.ispartof | Revista Iberoamericana de Automática e Informática industrial | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Autonomous Mobile Robots | es_ES |
dc.subject | Robot Navigation | es_ES |
dc.subject | Robot Vision | es_ES |
dc.subject | Visual Motion | es_ES |
dc.subject | Sistemas de navegación | es_ES |
dc.subject | Robot submarino autónomo | es_ES |
dc.subject | Navegación del robot | es_ES |
dc.subject | Visión del robot | es_ES |
dc.subject | Odometría visual | es_ES |
dc.title | Hacia la Navegación Visual de un Vehículo Autónomo Submarino en Áreas con Posidonia Oceanica | es_ES |
dc.title.alternative | Towards Visual Navigation of an Autonomous Underwater Vehicle in Areas with Posidonia Oceanica | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.4995/riai.2017.8828 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//TIN2014-58662-R/ES/AUGMENTED REALITY SUBSEA EXPLORATION ASSISTANT (ARSEA): UNA HERRAMIENTA PARA LA INSPECCION ASISTIDA Y LA RECONSTRUCCION 3D ON-LINE DE ENTORNOS SUBMARINOS/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Bonin-Font, F.; Coll Gomila, C.; Oliver Codina, G. (2017). Hacia la Navegación Visual de un Vehículo Autónomo Submarino en Áreas con Posidonia Oceanica. Revista Iberoamericana de Automática e Informática industrial. 15(1):24-35. https://doi.org/10.4995/riai.2017.8828 | es_ES |
dc.description.accrualMethod | OJS | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/riai.2017.8828 | es_ES |
dc.description.upvformatpinicio | 24 | es_ES |
dc.description.upvformatpfin | 35 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 15 | es_ES |
dc.description.issue | 1 | es_ES |
dc.identifier.eissn | 1697-7920 | |
dc.relation.pasarela | OJS\8828 | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.description.references | Bonin-Font, F., Massot, M., Negre, P. L., Oliver, G., Guerrero, E., Garcia, E., 2017. Towards a new Methodology to Evaluate the Environmental Impact of a Marine Outfall Using a Lightweight AUV. En: In MTS/IEEE Oceans. https://doi.org/10.1109/OCEANSE.2017.8084578 | es_ES |
dc.description.references | Bonin-Font, F., Massot-Campos, M., Oliver, G., 2016. Towards Visual Detection, Mapping and Quantification of Posidonia Oceanica using a Lightweight AUV. En: Proc. of IFAC Conference on Control Applications in Marine Systems. pp. 500-505. | es_ES |
dc.description.references | Burguera, A., Bonin-Font, F., Oliver, G., 2015. Trajectory-Based Visual Localization in Underwater Surveying Missions. Sensors, MDPI 15 (1), 1708-1735. https://doi.org/10.3390/s150101708 | es_ES |
dc.description.references | Carreras, M., Candela, C., Ribas, D., Mallios, A., MagA˜, L., Vidal, E., Palomeras, N., Ridao, P., 2013. SPARUS II, Design of a Lightweight Hovering AUV. Fifth International Workshop in Marine Technology (MARTECH). | es_ES |
dc.description.references | Diaz-Almela, E., Duarte, C., 2008. Management of Natura 2000 Habitats 1120, (Posidonia Oceanicae). Tech. rep., European Commission. | es_ES |
dc.description.references | Eustice, R., Pizarro, O., Singh, H., April 2008. Visually Augmented Navigation for Autonomous Underwater Vehicles. IEEE Journal of Oceanic Engineering 33 (2), 103-122. https://doi.org/10.1109/JOE.2008.923547 | es_ES |
dc.description.references | Eustice, R., Pizarro, O., Singh, H., Howland, J., 2002. UWIT: Underwater Image Toolbox for Optical Image Processing and Mosaicking in MATLAB. En: Proceedings of IEEE International Symposium on Underwater Technology,. pp. 141-145. https://doi.org/10.1109/UT.2002.1002415 | es_ES |
dc.description.references | Ferreira, F., Veruggio, G., Caccia, M., Bruzzone, G., 2016. A Survey on Realtime Motion Estimation Techniques for Underwater Robots. Journal of Real Time Image Processing 11 (4), 693-711. https://doi.org/10.1007/s11554-014-0416-z | es_ES |
dc.description.references | Fischler, M., Bolles, R., 1981. Random Sample Consensus: a Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography. Communications of the ACM 24 (6), 381-395. https://doi.org/10.1145/358669.358692 | es_ES |
dc.description.references | Geiger, A., Ziegler, J., Stiller, C., June 2011. Stereoscan: Dense 3d reconstruction in real-time. En: IEEE Intelligent Vehicles Symposium. Baden-Baden, Germany. https://doi.org/10.1109/IVS.2011.5940405 | es_ES |
dc.description.references | Hanley, J., Neil, B. M., 1982. The Meaning and Use of the Area under a Receiver Operating Characteristic (ROC) Curve. Radiology 143 (1), 521-539. https://doi.org/10.1148/radiology.143.1.7063747 | es_ES |
dc.description.references | Hartley, R., Zisserman, A., 2003. Multiple View Geometry in Computer Vision. Cambridge University Press. | es_ES |
dc.description.references | Jobson, D., Rahman, Z., Woodell, G., 1997. A Multiscale Retinex for Bridging the Gap Between Color Images and the Human Observation of Scenes. IEEE Transactions on Image Processing 6 (7), 965-976. https://doi.org/10.1109/83.597272 | es_ES |
dc.description.references | Jorda, G., Marba, N., Duarte, C., 2012. Mediterranean Seagrass Vulnerable to Regional Climate Warming. Nature Climate Change, 821-824. https://doi.org/10.1038/nclimate1533 | es_ES |
dc.description.references | Krig, S., 2014. Computer Vision Metrics. Springer, Ch. Interest Point Detector and Feature Descriptor Survey, pp. 217-282. https://doi.org/10.1007/978-1-4302-5930-5 | es_ES |
dc.description.references | Lauga, P., Valenzise, G., Chierchia, G., Dufaux, F., September 2014. Improved Tone Mapping Operator for HDR Coding Optimizing the Distortion/Spatial Complexity Trade-off. En: Proceedings of IEEE European Signal Processing Conference. pp. 1607-1611. | es_ES |
dc.description.references | Li, Y., Wang, S., Tian, Q., Ding, X., 2015. A Survey of Recent Advances in Visual Feature Detection. Neurocomputing (B), 736-751. | es_ES |
dc.description.references | Maida, G. D., Tomasello, A., Luzzu, F., Scannavino, A., Pirrotta, M., Orestano, C., Calvo, S., 2011. Discriminating Between Posidonia Oceanica Meadows and Sand Substratum Using Multibeam Sonar. ICES Journal of Marine Science 68 (1), 12-19. https://doi.org/10.1093/icesjms/fsq130 | es_ES |
dc.description.references | Matarrese, R., Acquaro, M., Morea, A., Tijani, K., Chiaradia, M., 2008. Applications of Remote Sensing Techniques for Mapping Posidonia Oceanica Meadows. En: Proceedings of IEEE International Geoscience and Remote Sensing Symposium. pp. 906-909. https://doi.org/10.1109/IGARSS.2008.4779870 | es_ES |
dc.description.references | Montefalcone, M., Rovere, A., Parravicini, V., Albertelli, G., Morri, C., Bianchi, C. N., 2013. Evaluating Change in Seagrass Meadows: A time-framed Comparison of Side Scan Sonar Maps. Aquatic Botany 104, 204-212. https://doi.org/10.1016/j.aquabot.2011.05.009 | es_ES |
dc.description.references | Moore, A., Allman, J., Goodman, R. M., 1991. A Real-time Neural System for Color Constancy. IEEE Transactions on Neural Networks 2 (2), 237-246. https://doi.org/10.1109/72.80334 | es_ES |
dc.description.references | Morel, J., Petro, A. B., Sbert, C., 2014. What is the Right Center/Surround for Retinex? En: Proceedings of the International Conference on Image Processing (ICIP). https://doi.org/10.1109/ICIP.2014.7025923 | es_ES |
dc.description.references | Mur-Artal, R., Montiel, J., Tardos, J., October 2015. ORB-SLAM: A Versatile and Accurate Monocular SLAM System. IEEE Transactions on Robotics 31 (5), 1147-1163. https://doi.org/10.1109/TRO.2015.2463671 | es_ES |
dc.description.references | Negre, P. L., Bonin-Font, F., Oliver, G., May 2016a. Cluster-Based Loop Closing Detection for Underwater SLAM in Feature-Poor Regions. En: Proc. Of IEEE International Conference on Robotics and Automation (ICRA). https://doi.org/10.1109/ICRA.2016.7487416 | es_ES |
dc.description.references | Negre, P. L., Bonin-Font, F., Oliver, G., 2016b. Global Image Signature for Visual Loop-Closure Detection. Autonomous Robots 40 (8), 1403-1417. https://doi.org/10.1007/s10514-015-9522-4 | es_ES |
dc.description.references | Scaradozzi, D., Conte, G., de Capua, G., Sorbi, L., Luciani, C., de Cecco, P., Sorci, A., 2009. Innovative Technology for Studying Growth Areas of Posidonia Oceanica. En: Proceedings of the IEEE WorkShop on Environmental, Energy and Structural Monitoring Systems. pp. 71-75. https://doi.org/10.1109/EESMS.2009.5341312 | es_ES |
dc.description.references | Shertzer, K., Prager, M., 2002. Least Median of Squares: A Suitable Objective Function for Stock Assessment Models. Canadian Journal of Fisheres and Aquatic Sciences 59 (9), 1474-1481 Vol.2. | es_ES |
dc.description.references | Short, F., Polidoro, B., Livingstone, S., Carpenter, K., Bandeira, S., Bujang, J., Calumpong, H., Carruthers, T., Coles, R., Dennison, W., Erftemeijer, P., Fortes, M., Freeman, A., Jagtap, T., Kamal, A., Kendrick, G., Kenworthy, W., Nafie, Y. L., Nasution, I., Orth, R., Prathep, A., van Sanciangco, J., Tussenbroek, B., Vergara, S., Waycott, M., Zieman, J., 2012. Estinction Risk Assessment of the World Seagrass Species Biological Conservation. Canadian Journal of Fisheries and Aquatic Sciences 144 (1961-1971). | es_ES |
dc.description.references | Wilow-Garage, 2014. Open Source Computer Vision (Open Cv). http://docs.opencv.org/ , function findhomography. | es_ES |