Mostrar el registro sencillo del ítem
dc.contributor.author | de la Fuente López, Eusebio![]() |
es_ES |
dc.contributor.author | Miguel Trespaderne, Felix![]() |
es_ES |
dc.date.accessioned | 2020-05-27T07:32:24Z | |
dc.date.available | 2020-05-27T07:32:24Z | |
dc.date.issued | 2012-10-14 | |
dc.identifier.issn | 1697-7912 | |
dc.identifier.uri | http://hdl.handle.net/10251/144403 | |
dc.description.abstract | [ES] En este artículo se presenta un algoritmo para la detección de elipses en imágenes, cuyo objetivo es el cálculo d e la posición 3D de una característica circular en una aplicación robótica. El algoritmo emplea un procedimiento estocástico RANSAC cuya eficiencia ha sido mejorada. El muestreo aleatorio ha sido sustituido por un muestreo guiado sobre las cadenas de contorno de la imagen, que son ordenadas de acuerdo a un criterio de probabilidad de formar parte de la elipse buscada. Esta estrategia disminuye notablemente la cantidad de muestras necesarias, permitiendo que el algoritmo sea adecuado para tiempo real. | es_ES |
dc.description.abstract | [EN] In this paper, we present a ellipse detection algorithm developed to measure the 3-D position of a circular feature in a robotic application. The algorithm uses a RANSAC stochastic procedure whose efficiency has been significantly improved, substituting the random sampling with a guided sampling on the curve segments in the image. The contours of the image are first split analyzing their curvature. Then the curve segments are sorted according to their likelihood to be part of the ellipse. We have used the length as a prior indicator of this likelihood. The RANSAC algorithm starts considering only the longer curve segments whilst shorter curve segments are progressively incorporated. This strategy notably diminishes the amount of samples needed and makes the algorithm suitable for real time. | es_ES |
dc.language | Español | es_ES |
dc.publisher | Universitat Politècnica de València | es_ES |
dc.relation.ispartof | Revista Iberoamericana de Automática e Informática industrial | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Visual Pattern Recognition | es_ES |
dc.subject | Robust Estimation | es_ES |
dc.subject | Robot Vision | es_ES |
dc.subject | Industrial Robots | es_ES |
dc.subject | Reconocimiento de Patrones | es_ES |
dc.subject | Estimación Robusta | es_ES |
dc.subject | Visión para Robots | es_ES |
dc.subject | Robots Industriales | es_ES |
dc.title | Detección Eficiente de Elipses en Imágenes. Aplicación al Posicionamiento 3D de un Robot Industrial | es_ES |
dc.title.alternative | Efficient ellipse detection. Application to the 3D pose estimation of an industrial robot | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.riai.2012.09.005 | |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | De La Fuente López, E.; Miguel Trespaderne, F. (2012). Detección Eficiente de Elipses en Imágenes. Aplicación al Posicionamiento 3D de un Robot Industrial. Revista Iberoamericana de Automática e Informática industrial. 9(4):419-428. https://doi.org/10.1016/j.riai.2012.09.005 | es_ES |
dc.description.accrualMethod | OJS | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.riai.2012.09.005 | es_ES |
dc.description.upvformatpinicio | 419 | es_ES |
dc.description.upvformatpfin | 428 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 9 | es_ES |
dc.description.issue | 4 | es_ES |
dc.identifier.eissn | 1697-7920 | |
dc.relation.pasarela | OJS\9581 | es_ES |
dc.description.references | Bouguet, J.Y., 2010. Camera calibration toolbox for matlab. Disponible en: http://www.vision.caltech.edu/bouguetj/calib_doc/. | es_ES |
dc.description.references | Chum, O., Matas,J., 2005. Matching with PROSAC - progressive sampling concensus. In Proc. of the CVPR 2005. | es_ES |
dc.description.references | Desouza, G. N., & Kak, A. C. (2002). Vision for mobile robot navigation: a survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(2), 237-267. doi:10.1109/34.982903 | es_ES |
dc.description.references | Fischler, M. A., & Bolles, R. C. (1981). Random sample consensus. Communications of the ACM, 24(6), 381-395. doi:10.1145/358669.358692 | es_ES |
dc.description.references | Fitzgibbon, A., Pilu, M., & Fisher, R. B. (1999). Direct least square fitting of ellipses. IEEE Transactions on Pattern Analysis and Machine Intelligence, 21(5), 476-480. doi:10.1109/34.765658 | es_ES |
dc.description.references | Fuente, E. de la, 2011. Robot guiado por visión. Video disponible en http://www.youtube.com/watch?v=RGyxOSdhNm8. | es_ES |
dc.description.references | Gracia L., Pérez C., 2010. Revisión de esquemas de control visual y propuesta de mejora. Revista Iberoamericana de Automática e Informática Industrial, 7, 2, 57-67. | es_ES |
dc.description.references | Hahn, K., Jung, S., Han, Y., & Hahn, H. (2008). A new algorithm for ellipse detection by curve segments. Pattern Recognition Letters, 29(13), 1836-1841. doi:10.1016/j.patrec.2008.05.025 | es_ES |
dc.description.references | Hartley R., Zisserman R., 2004. Multiple View Geometry in Computer Vision. Cambridge University Press. | es_ES |
dc.description.references | Hermann, S., Klette, R., 2006. A comparative study on 2d curvature estimators. Research report CITR-TR-183, CITR, The University of Auckland, New Zealand. | es_ES |
dc.description.references | Hough, P.V.C., 1962. Method and means for recognizing complex patterns. U.S. Patent 3069654. | es_ES |
dc.description.references | Illingworth, J., & Kittler, J. (1988). A survey of the hough transform. Computer Vision, Graphics, and Image Processing, 44(1), 87-116. doi:10.1016/s0734-189x(88)80033-1 | es_ES |
dc.description.references | Kanatani, K., & Liu, W. (1993). 3D Interpretation of Conics and Orthogonality. CVGIP: Image Understanding, 58(3), 286-301. doi:10.1006/ciun.1993.1043 | es_ES |
dc.description.references | KANATANI, K., & OHTA, N. (2004). AUTOMATIC DETECTION OF CIRCULAR OBJECTS BY ELLIPSE GROWING. International Journal of Image and Graphics, 04(01), 35-50. doi:10.1142/s0219467804001282 | es_ES |
dc.description.references | Liu, Z.-Y., & Qiao, H. (2009). Multiple ellipses detection in noisy environments: A hierarchical approach. Pattern Recognition, 42(11), 2421-2433. doi:10.1016/j.patcog.2009.01.028 | es_ES |
dc.description.references | Mai, F., Hung, Y. S., Zhong, H., & Sze, W. F. (2008). A hierarchical approach for fast and robust ellipse extraction. Pattern Recognition, 41(8), 2512-2524. doi:10.1016/j.patcog.2008.01.027 | es_ES |
dc.description.references | Marji, M., 2003. On the detection of dominant points on digital planar curves PhD thesis, Wayne State University, Detroit, Michigan. | es_ES |
dc.description.references | McLaughlin, R. A. (1998). Randomized Hough Transform: Improved ellipse detection with comparison. Pattern Recognition Letters, 19(3-4), 299-305. doi:10.1016/s0167-8655(98)00010-5 | es_ES |
dc.description.references | McLaughlin, R. A., & Alder, M. D. (1998). The Hough transform versus the UpWrite. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(4), 396-400. doi:10.1109/34.677267 | es_ES |
dc.description.references | Miguel Trespaderne, F., Fuente, E. de la, 2009. Visually guided robot for radiator sealing. IEEE International Conference on Emergent Technologies and Factory Automation. | es_ES |
dc.description.references | Myatt, D.R., Torr, P.H.S., Nasuto, S.J., Bishop, J.M., Craddock. R., (2002). Napsac: High noise, high dimensional robust estimation - it's in the bag. BMVC02, 2, 458-467. | es_ES |
dc.description.references | Mundy, J.L., Zisserman, A., (1992). Eds., Geometric Invariance in Computer Vision. MIT Press, Cambridge, Massachusetts, USA. | es_ES |
dc.description.references | OpenCV, (2011). Open Source Computer Vision Library. Disponible en: http://sourceforge.net/projects/opencvlibrary/. | es_ES |
dc.description.references | Rosenhahn B., Perwass C., Sommer G., 2004. CVonline: Foundations about. 2D-3D pose estimation. Disponible en: http://homepages.inf.ed.ac.uk/rbf/CVonline/. | es_ES |
dc.description.references | Rosin, P. L., & West, G. A. W. (1995). Nonparametric segmentation of curves into various representations. IEEE Transactions on Pattern Analysis and Machine Intelligence, 17(12), 1140-1153. doi:10.1109/34.476507 | es_ES |
dc.description.references | Rousseeuw, P.J., Leroy, A.M., 1987. Robust Regression and Outlier Detection. Wiley. | es_ES |
dc.description.references | Soria, C., Roberti, F., Carelli, R., & Sebastián, J. M. (2008). Control Servo-Visual de un Robot Manipulador Planar Basado en Pasividad. Revista Iberoamericana de Automática e Informática Industrial RIAI, 5(4), 54-61. doi:10.1016/s1697-7912(08)70177-8 | es_ES |
dc.description.references | Thanh N. M., Ahuja S., Wu Q. M. J., 2009. A real-time ellipse detection based on edge grouping. IEEE International Conference on Systems, Man, and Cybernetics, 3280-3286. | es_ES |
dc.description.references | Tordoff, B., Murray, D.W., 2002. Guided sampling and consensus for motion estimation. In Proc 7th European Conf on Computer Vision, Copenhagen, 82-98. | es_ES |
dc.description.references | Xu, L., Oja, E., & Kultanen, P. (1990). A new curve detection method: Randomized Hough transform (RHT). Pattern Recognition Letters, 11(5), 331-338. doi:10.1016/0167-8655(90)90042-z | es_ES |
dc.description.references | Zhang Z., 1997. Parameter estimation techniques: a tutorial with application to conic fitting. Image and Vision Computing 15, 59-76. | es_ES |
dc.description.references | Zhang Z., 1998. A Flexible New Technique for Camera Calibration. Microsoft Research Technical Report MSR-TR-98-71, Microsoft Corporation. | es_ES |