Mostrar el registro sencillo del ítem
dc.contributor.author | Maestre, José María | es_ES |
dc.contributor.author | Chanfreut, Paula | es_ES |
dc.contributor.author | García Martín, Javier | es_ES |
dc.contributor.author | Masero, Eva | es_ES |
dc.contributor.author | Inoue, Masaki | es_ES |
dc.contributor.author | Camacho, Eduardo F. | es_ES |
dc.date.accessioned | 2021-12-21T09:06:06Z | |
dc.date.available | 2021-12-21T09:06:06Z | |
dc.date.issued | 2021-12-17 | |
dc.identifier.issn | 1697-7912 | |
dc.identifier.uri | http://hdl.handle.net/10251/178681 | |
dc.description.abstract | [EN] Predictive control encompasses a family of controllers that continually replan the system inputs during a certain time horizon to optimize their expected evolution according to a given criterion. This methodology has among its current challenges the adaptation to the paradigm of the so-called cyber-physical systems, which are composed of computers, sensors, actuators and physical entities of various kinds, including robots and even human beings who exchange information to control physical processes. This tutorial introduces the core concepts for the application of predictive control to cyber-physical systems by reviewing a series of examples that exploit the versatility of this design framework so as to solve the challenges presented by 21st century applications. | es_ES |
dc.description.abstract | [ES] El control predictivo engloba a una familia de controladores que replanifican continuamente las entradas del sistema durante un cierto horizonte temporal con el fin de optimizar su evolución esperada conforme a un criterio dado. Esta metodología tiene entre sus retos actuales la adaptación al paradigma de los llamados sistemas ciberfísicos, que están compuestos por computadoras, sensores, actuadores y entidades físicas de diversa índole entre las que se incluyen robots e incluso seres humanos que intercambian información con el objetivo de controlar procesos físicos. Este tutorial presenta los conceptos centrales de la integración del control predictivo en este tipo de sistemas mediante el repaso a una serie de ejemplos que explotan la versatilidad de este marco de diseño de controladores para resolver los desafíos que presentan las aplicaciones del siglo XXI. | es_ES |
dc.description.sponsorship | Este trabajo ha sido financiado por el European Research Council (ERC) en el marco del programa de investigación e innovación Horizonte 2020 de la Unión Europea [OCONTSOLAR, ref. 789051], por el Ministerio de Economía con el proyecto C3PO [ref. DPI2017-86918-R], por el Ministerio de Ciencia, Innovación y Universidades en el marco del programa de Formación de Profesorado Universitario (FPU) [FPU17/02653 y FPU18/04476] y por la Consejería Transformación Económica, Industria, Conocimiento y Universidades en el marco del programa de Ayudas a los agentes públicos del Sistema Andaluz del Conocimiento, para la realización de proyectos de I+D+i (PAIDI 2020) [Ampliación Aquacollect, ref. P18-HO-4713]. | es_ES |
dc.language | Español | es_ES |
dc.publisher | Universitat Politècnica de València | es_ES |
dc.relation.ispartof | Revista Iberoamericana de Automática e Informática industrial | es_ES |
dc.rights | Reconocimiento - No comercial - Compartir igual (by-nc-sa) | es_ES |
dc.subject | Control predictivo basado en modelos | es_ES |
dc.subject | Control de robots y sistemas multi-robot | es_ES |
dc.subject | Sistemas ciber-físicos en control | es_ES |
dc.subject | Interacción persona máquina en sistemas de control automático | es_ES |
dc.subject | Control coalicional | es_ES |
dc.subject | Model predictive control | es_ES |
dc.subject | Robots and multi-robot systems control | es_ES |
dc.subject | Cyber-physical systems control | es_ES |
dc.subject | Human-machine interaction in automatic control systems | es_ES |
dc.subject | Coalitional control | es_ES |
dc.title | Control predictivo de sistemas ciberfísicos | es_ES |
dc.title.alternative | Predictive Control of Cyber-Physical Systems | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.4995/riai.2021.15771 | |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/789051/EU/Optimal Control of Thermal Solar Energy Systems/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/DPI2017-86918-R/ES/CONTROL COALICIONAL APLICADO A LA OPTIMIZACION DE SISTEMAS CIBER-FISICOS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICIU//FPU17%2F02653/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICIU//FPU18%2F04476/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Junta de Andalucía//P18-HO-4713/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Maestre, JM.; Chanfreut, P.; García Martín, J.; Masero, E.; Inoue, M.; Camacho, EF. (2021). Control predictivo de sistemas ciberfísicos. Revista Iberoamericana de Automática e Informática industrial. 19(1):1-12. https://doi.org/10.4995/riai.2021.15771 | es_ES |
dc.description.accrualMethod | OJS | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/riai.2021.15771 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 12 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 19 | es_ES |
dc.description.issue | 1 | es_ES |
dc.identifier.eissn | 1697-7920 | |
dc.relation.pasarela | OJS\15771 | es_ES |
dc.contributor.funder | European Commission | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | Ministerio de Ciencia, Innovación y Universidades | es_ES |
dc.description.references | Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., Cayirci, E., 2002. Wireless Sensor Networks: A Survey. Computer Networks 38 (4), 393-422. | es_ES |
dc.description.references | Angulo, A., Nachtmann, H., Waller, M. A., 2004. Supply Chain Information Sharing in a Vendor Managed Inventory Partnership. Journal of Business Logistics 25 (1), 101-120. | es_ES |
dc.description.references | Badal, F. R., Das, P., Sarker, S. K., Das, S. K., 2019. A Survey on Control Issues in Renewable Energy Integration and Microgrid. Protection and Control of Modern Power Systems 4 (1), 1-27. | es_ES |
dc.description.references | Bordons, C., García Torres, F., Valverde, L., 2015. Gestión óptima de la energía en microrredes con generación renovable. Revista Iberoamericana de Automática e Informática Industrial 12 (2), 117-132. | es_ES |
dc.description.references | Camacho, E. F., Berenguel, M., 2012. Control of Solar Energy Systems. IFAC Proceedings Volumes 45 (15), 848-855. | es_ES |
dc.description.references | Camacho, E. F., Berenguel, M., Rubio, F. R., 1997. Advanced Control of Solar Plants. Springer Berlin. | es_ES |
dc.description.references | Camacho, E. F., Bordons, C., 1999. Model Predictive Control. Springer, Berlin Heidelberg. | es_ES |
dc.description.references | Carrasco, J. M., Franquelo, L. G., Bialasiewicz, J. T., Galván, E., PortilloGuisado, R. C., Prats, M. M., Le'on, J. I., Moreno-Alfonso, N., 2006. Power-Electronic Systems for the Grid Integration of Renewable Energy Sources: A Survey. IEEE Transactions on Industrial Electronics 53 (4), 1002-1016. | es_ES |
dc.description.references | Castilla, M., Álvarez, J. D., Berenguel, M., Pérez, M., Rodríguez, F., Guzmán, J. L., 2010. Técnicas de control del confort en edificios. Revista Iberoamericana de Automática e Informática Industrial RIAI 7 (3), 5-24. | es_ES |
dc.description.references | Chanfreut, P., Maestre, J. M., Camacho, E. F., 2021. A Survey on Clustering Methods for Distributed and Networked Control Systems. Annual Reviews in Control. | es_ES |
dc.description.references | DOI: https://doi.org/10.1016/j.arcontrol.2021.08.002 | es_ES |
dc.description.references | Conde, G., Quijano, N., Ocampo-Martínez, C., 2021. Modeling and Control in Open-Channel Irrigation Systems: A Review. Annual Reviews in Control. | es_ES |
dc.description.references | DOI: https://doi.org/10.1016/j.arcontrol.2021.01.003 | es_ES |
dc.description.references | Dey, N., Ashour, A. S., Shi, F., Fong, S. J., Tavares, J. M., 2018. Medical Cyber-Physical Systems: A Survey. Journal of medical systems 42 (4), 1-13. | es_ES |
dc.description.references | Fele, F., Maestre, J. M., Camacho, E. F., 2017. Coalitional Control: Cooperative Game Theory and Control. IEEE Control Systems Magazine 37 (1), 53-69. | es_ES |
dc.description.references | Fele, F., Maestre, J. M., Hashemy, M., Mu˜noz de la Pe˜na, D., Camacho, E. F., 2014. Coalitional Model Predictive Control of an Irrigation Canal. Journal of Process Control 24 (4), 314-325. | es_ES |
dc.description.references | DOI: https://doi.org/10.1016/j.jprocont.2014.02.005 | es_ES |
dc.description.references | Fernández García, I., Chanfreut, P., Jurado, I., Maestre, J. M., 2021. A Data-Based Model Predictive Decision Support System for Inventory Management in Hospitals. IEEE Journal of Biomedical and Health Informatics 25 (6), 2227-2236. | es_ES |
dc.description.references | DOI: https://doi.org/10.1109/JBHI.2020.3039692 | es_ES |
dc.description.references | Frejo, J. R. D., Camacho, E. F., 2020. Centralized and Distributed Model Predictive Control for the Maximization of the Thermal Power of Solar Parabolic-Trough Plants. Solar Energy 204, 190-199. | es_ES |
dc.description.references | Gil, J., Roca, L., Berenguel, M., 2020. Modelado y control automático en destilación por membranas solar: fundamentos y propuestas para su desarrollo tecnológico. Revista Iberoamericana de Automática e Informática industrial 17 (4), 329-343. | es_ES |
dc.description.references | Guzmán, J., Acién, F., Berenguel, M., 2020. Modelado y control de la producción de microalgas en fotobiorreactores industriales. Revista Iberoamericana de Automática e Informática industrial 18 (1), 1-18. | es_ES |
dc.description.references | Hara, K., Inoue, M., Maestre, J. M., 2020. Data-Driven Human Modeling: Quantifying Personal Tendency Toward Laziness. IEEE Control Systems Letters 5 (4), 1219-1224. | es_ES |
dc.description.references | DOI: https://doi.org/10.1109/LCSYS.2020.3023337 | es_ES |
dc.description.references | Hatanaka, T., Chopra, N., Fujita, M., 2015. Passivity-Based Bilateral Human-Swarm-Interactions for Cooperative Robotic Networks and Human Passivity Analysis. In: 2015 54th IEEE Conference on Decision and Control (CDC). IEEE, pp. 1033-1039. | es_ES |
dc.description.references | DOI: https://doi.org/10.1109/CDC.2015.7402008 | es_ES |
dc.description.references | Inoue, M., Gupta, V., 2019. "Weak" Control for Human-in-the-Loop Systems. IEEE Control Systems Letters 3 (2), 440-445. | es_ES |
dc.description.references | Jain, A., Chakrabortty, A., Biyik, E., 2018. Distributed Wide-Area Control of Power System Oscillations under Communication and Actuation Constraints. Control Engineering Practice 74, 132-143. | es_ES |
dc.description.references | Jianjun, S., Xu, W., Jizhen, G., Yangzhou, C., 2013. The Analysis of Traffic Control Cyber-Physical Systems. Procedia-Social and Behavioral Sciences 96, 2487-2496. | es_ES |
dc.description.references | Jurado, I., Maestre, J. M., Velarde, P., Ocampo-Martínez, C., Fernández, I., Tejera, B. I., del Prado, J. R., 2016. Stock Management in Hospital Pharmacy Using Chance-Constrained Model Predictive Control. Computers in Biology and Medicine 72, 248-255. | es_ES |
dc.description.references | Khamis, A., Hussein, A., Elmogy, A., 2015. Multi-robot Task Allocation: A Review of the State-of-the-art. In: Cooperative Robots and Sensor Networks. Springer, pp. 31-51. | es_ES |
dc.description.references | Koubâa, A., Khelil, A., 2014. Cooperative Robots and Sensor Networks. Springer. | es_ES |
dc.description.references | La Bella, A., Klaus, P., Ferrari-Trecate, G., Scattolini, R., 2021. Supervised Model Predictive Control of Large-Scale Electricity Networks via Clustering Methods. Optimal Control Applications and Methods. | es_ES |
dc.description.references | Lee, J., Bagheri, B., Kao, H.-A., 2015. A Cyber-Physical Systems Architecture for Industry 4.0-Based Manufacturing Systems. Manufacturing letters 3, 18-23. | es_ES |
dc.description.references | Liang, X., 2016. Emerging Power Quality Challenges due to Integration of Renewable Energy Sources. IEEE Transactions on Industry Applications 53 (2), 855-866. | es_ES |
dc.description.references | Maestre, J. M., Fernández, M. I., Jurado, I., 2018. An application of economic model predictive control to inventory management in hospitals. Control Engineering Practice 71, 120-128. | es_ES |
dc.description.references | Maestre, J. M., Negenborn, R. R. (Eds.), 2014. Distributed Model Predictive Control Made Easy. Vol. 69 of Intelligent Systems, Control and Automation: Science and Engineering. Springer. | es_ES |
dc.description.references | Maestre, J. M., van Overloop, P. J., Hashemy, M., Sadowska, A., Camacho, E. F., 2014. Human in the Loop Model Predictive Control: An Irrigation Canal Case Study. In: 53rd IEEE Conference on Decision and Control. IEEE, pp. 4881-4886. | es_ES |
dc.description.references | DOI: https://doi.org/10.1109/CDC.2014.7040151 | es_ES |
dc.description.references | Maestre, J. M., Zafra Cabeza, A., Fernández Garcáa, M. I., Isla Tejera, B., del Prado, J. R., Camacho, E. F., 2013. Control predictivo aplicado a la gestión de stocks en farmacia hospitalaria: un enfoque orientado a la minimización del riesgo. Revista Iberoamericana de Automática e Informática industrial 10 (2), 149-158. | es_ES |
dc.description.references | DOI: https://doi.org/10.1016/j.riai.2013.03.005 | es_ES |
dc.description.references | Martín, J. G., Frejo, J. R. D., García, R. A., Camacho, E. F., 2021a. Multi-Robot Task Allocation Problem with Multiple Non-Linear Criteria Using Branch and Bound and Genetic Algorithms. Intelligent Service Robotics. | es_ES |
dc.description.references | Martín, J. G., García, R. A., Camacho, E. F., 2021b. Event-MILP-Based Task Allocation for Heterogeneous Robotic Sensor Network for Thermosolar Plants. Journal of Intelligent & Robotic Systems 102 (1), 1. | es_ES |
dc.description.references | DOI: https://doi.org/10.1007/s10846-021-01346-w | es_ES |
dc.description.references | Martín, J. G., Maestre, J. M., Camacho, E. F., 2021c. Spatial Irradiance Estimation in a Thermosolar Power Plant by a Mobile Robot Sensor Network. Solar Energy 220, 735-744. | es_ES |
dc.description.references | DOI: https://doi.org/10.1016/j.solener.2021.03.038 | es_ES |
dc.description.references | Martínez, O. E. B., 2004. Evolución de una idea: de la cibernética a la cibercultura la filosofía griega y la cibernética. Cuadernos de Filosofía Latinoamericana 25 (91), 1. | es_ES |
dc.description.references | Masero, E., Frejo, J. R. D., Maestre, J. M., Camacho, E. F., 2020. A Light Clustering Model Predictive Control Approach to Maximize Thermal Power in Solar Parabolic-Trough Plants. Solar Energy 214, 531-541. | es_ES |
dc.description.references | Masero, E., Maestre, J. M., Camacho, E. F., 2022. Market-based clustering of model predictive controllers for maximizing collected energy by parabolictrough solar collector fields. Applied Energy 306, 117936. | es_ES |
dc.description.references | Nagahara, M., Quevedo, D. E., Nesi'c, D., 2015. Maximum Hands-Off Control: A Paradigm of Control Effort Minimization. IEEE Transactions on Automatic Control 61 (3), 735-747. | es_ES |
dc.description.references | DOI: https://doi.org/10.1109/TAC.2015.2452831 | es_ES |
dc.description.references | Negenborn, R. R., Maestre, J. M., 2014. Distributed Model Predictive Control: An Overview and Roadmap of Future Research Opportunities. IEEE Control Systems Magazine 34 (4), 87-97. | es_ES |
dc.description.references | Negenborn, R. R., van Overloop, P. J., Keviczky, T., De Schutter, B., 2009. Distributed Model Predictive Control of Irrigation Canals. Network and Heterogeneus Media 4 (2), 359-380. | es_ES |
dc.description.references | Priess, M. C., Conway, R., Choi, J., Popovich, J. M., Radcliffe, C., 2014. Solutions to the Inverse LQR Problem with Application to Biological Systems Analysis. IEEE Transactions on Control Systems Technology 23 (2), 770-777. | es_ES |
dc.description.references | Protte, M., Fahr, R., Quevedo, D. E., 2020. Behavioral Economics for Humanin-the-Loop Control Systems Design: Overconfidence and the Hot Hand Fallacy. IEEE Control Systems Magazine 40 (6), 57-76. | es_ES |
dc.description.references | DOI: https://doi.org/10.1109/MCS.2020.3019723 | es_ES |
dc.description.references | Qin, S. J., Badgwell, T. A., 2003. A Survey of Industrial Model Predictive Control Technology. Control Engineering Practice 11 (7), 733-764. | es_ES |
dc.description.references | DOI: https://doi.org/10.1016/S0967-0661(02)00186-7 | es_ES |
dc.description.references | Ramadan, A., Choi, J., Radcliffe, C. J., 2016. Inferring Human Subject Motor Control Intent Using Inverse MPC. In: 2016 American Control Conference (ACC). IEEE, pp. 5791-5796. | es_ES |
dc.description.references | Ramadan, A., Choi, J., Radcliffe, C. J., Popovich, J. M., Reeves, N. P., 2018. Inferring Control Intent During Seated Balance Using Inverse Model Predictive Control. IEEE Robotics and Automation Letters 4 (2), 224-230. | es_ES |
dc.description.references | Ramírez-Arias, A., Rodríguez, F., Guzmán, J. L., Berenguel, M., 2012. Multiobjective Hierarchical Control Architecture for Greenhouse Crop Growth. Automatica 48 (3), 490-498. | es_ES |
dc.description.references | Sadowska, A., van Overloop, P. J., Maestre, J. M., De Schutter, B., 2015. Human-in-the-Loop Control of an Irrigation Canal Using Time Instant Optimization Model Predictive Control. In: Proceedings of the 2015 European Control Conference (ECC). IEEE, pp. 3274-3279. | es_ES |
dc.description.references | DOI: https://doi.org/10.1109/ECC.2015.7331039 | es_ES |
dc.description.references | Sánchez, A. J., Gallego, A. J., Escaño, J. M., Camacho, E. F., 2018. Temperature Homogenization of a Solar Trough Field for Performance Improvement. Solar Energy 165, 1-9. | es_ES |
dc.description.references | Schmidt, M., Åhlund, C., 2018. Smart Buildings as Cyber-Physical Systems: Data-Driven Predictive Control Strategies for Energy Efficiency. Renewable and Sustainable Energy Reviews 90, 742-756. | es_ES |
dc.description.references | Shibasaki, S., Inoue, M., Arahata, M., Gupta, V., 2020. Weak Control Approach to Consumer-Preferred Energy Management. IFAC-PapersOnLine 53 (2), 17083-17088. | es_ES |
dc.description.references | Sun, C., Puig, V., Cembrano, G., 2020. Real-Time Control of Urban Water Cycle under Cyber-Physical Systems Framework. Water 12 (2), 406. | es_ES |
dc.description.references | Van Overloop, P. J., Maestre, J. M., Sadowska, A. D., Camacho, E. F., De Schutter, B., 2015. Human-in-the-Loop Model Predictive Control of an Irrigation Canal [Applications of Control]. IEEE Control Systems Magazine 35 (4),19-29. | es_ES |
dc.description.references | DOI: https://doi.org/10.1109/MCS.2015.2427040 | es_ES |
dc.description.references | Wang, G., Gunasekaran, A., Ngai, E. W., Papadopoulos, T., 2016. Big Data Analytics in Logistics and Supply Chain Management: Certain Investigations for Research and Applications. International Journal of Production Economics 176, 98-110. | es_ES |
dc.description.references | Wiener, N., 1948. Cybernetics or Control and Communication in the Animal and the Machine. | es_ES |
dc.description.references | Wolf, W., 2009. Cyber-physical systems. IEEE Annals of the History of Computing 42 (03), 88-89. | es_ES |
dc.description.references | Wu, F.-J., Kao, Y.-F., Tseng, Y.-C., 2011. From Wireless Sensor Networks Towards Cyber Physical Systems. Pervasive and Mobile computing 7 (4), 397-413. | es_ES |
dc.description.references | Zafra-Cabeza, A., Maestre, J. M., Ridao, M. A., Camacho, E. F., Sánchez, L.,2011. A Hierarchical Distributed Model Predictive Control Approach in Irrigation Canals: A Risk Mitigation Perspective. Journal of Process Control 21 (5), 787-799. | es_ES |
dc.description.references | DOI: https://doi.org/10.1016/j.jprocont.2010.12.012 | es_ES |
dc.description.references | Zhong, R. Y., Newman, S. T., Huang, G. Q., Lan, S., 2016. Big Data for Supply Chain Management in the Service and Manufacturing Sectors: Challenges, Opportunities, and Future Perspectives. Computers & Industrial Engineering 101, 572-591. | es_ES |
dc.relation.references | 10.1016/S1389-1286(01)00302-4 | es_ES |
dc.relation.references | 10.1002/j.2158-1592.2004.tb00171.x | es_ES |
dc.relation.references | 10.1186/s41601-019-0122-8 | es_ES |
dc.relation.references | 10.1016/j.riai.2015.03.001 | es_ES |
dc.relation.references | 10.3182/20120710-4-SG-2026.00181 | es_ES |
dc.relation.references | 10.1007/978-1-4471-0981-5 | es_ES |
dc.relation.references | 10.1007/978-1-4471-3398-8 | es_ES |
dc.relation.references | 10.1109/TIE.2006.878356 | es_ES |
dc.relation.references | 10.1016/S1697-7912(10)70038-8 | es_ES |
dc.relation.references | 10.1016/j.arcontrol.2021.08.002 | es_ES |
dc.relation.references | 10.1016/j.arcontrol.2021.01.003 | es_ES |
dc.relation.references | 10.1007/s10916-018-0921-x | es_ES |
dc.relation.references | 10.1109/MCS.2016.2621465 | es_ES |
dc.relation.references | 10.1016/j.jprocont.2014.02.005 | es_ES |
dc.relation.references | 10.1109/JBHI.2020.3039692 | es_ES |
dc.relation.references | 10.1016/j.solener.2020.04.033 | es_ES |
dc.relation.references | 10.4995/riai.2020.13122 | es_ES |
dc.relation.references | 10.4995/riai.2020.13604 | es_ES |
dc.relation.references | 10.1109/LCSYS.2020.3023337 | es_ES |
dc.relation.references | 10.1109/CDC.2015.7402008 | es_ES |
dc.relation.references | 10.1109/LCSYS.2019.2891489 | es_ES |
dc.relation.references | 10.1016/j.conengprac.2018.03.003 | es_ES |
dc.relation.references | 10.1016/j.sbspro.2013.08.278 | es_ES |
dc.relation.references | 10.1016/j.compbiomed.2015.11.011 | es_ES |
dc.relation.references | 10.1007/978-3-319-18299-5_2 | es_ES |
dc.relation.references | 10.1007/978-3-642-39301-3 | es_ES |
dc.relation.references | 10.1002/oca.2725 | es_ES |
dc.relation.references | 10.1016/j.mfglet.2014.12.001 | es_ES |
dc.relation.references | 10.1109/TIA.2016.2626253 | es_ES |
dc.relation.references | 10.1016/j.conengprac.2017.10.012 | es_ES |
dc.relation.references | 10.1007/978-94-007-7006-5 | es_ES |
dc.relation.references | 10.1109/CDC.2014.7040151 | es_ES |
dc.relation.references | 10.1016/j.riai.2013.03.005 | es_ES |
dc.relation.references | 10.1007/s11370-021-00393-4 | es_ES |
dc.relation.references | 10.1007/s10846-021-01346-w | es_ES |
dc.relation.references | 10.1016/j.solener.2021.03.038 | es_ES |
dc.relation.references | 10.1016/j.solener.2020.11.056 | es_ES |
dc.relation.references | 10.1016/j.apenergy.2021.117936 | es_ES |
dc.relation.references | 10.1109/TAC.2015.2452831 | es_ES |
dc.relation.references | 10.1109/MCS.2014.2320397 | es_ES |
dc.relation.references | 10.3934/nhm.2009.4.359 | es_ES |
dc.relation.references | 10.1109/TCST.2014.2343935 | es_ES |
dc.relation.references | 10.1016/S0967-0661(02)00186-7 | es_ES |
dc.relation.references | 10.1109/ACC.2016.7526577 | es_ES |
dc.relation.references | 10.1109/LRA.2018.2886407 | es_ES |
dc.relation.references | 10.1016/j.automatica.2012.01.002 | es_ES |
dc.relation.references | 10.1109/ECC.2015.7331039 | es_ES |
dc.relation.references | 10.1016/j.solener.2018.03.001 | es_ES |
dc.relation.references | 10.1016/j.rser.2018.04.013 | es_ES |
dc.relation.references | 10.1016/j.ifacol.2020.12.1616 | es_ES |
dc.relation.references | 10.3390/w12020406 | es_ES |
dc.relation.references | 10.1109/MCS.2015.2427040 | es_ES |
dc.relation.references | 10.1016/j.ijpe.2016.03.014 | es_ES |
dc.relation.references | 10.1109/MC.2009.81 | es_ES |
dc.relation.references | 10.1016/j.pmcj.2011.03.003 | es_ES |
dc.relation.references | 10.1016/j.jprocont.2010.12.012 | es_ES |
dc.relation.references | 10.1016/j.cie.2016.07.013 | es_ES |