Riunet Móvil

Home Versión de escritorio

Integración de la estrategia FMBPC en una estructura de control predictivo en lazo cerrado. Aplicación al control de fangos activados

Mostrar el registro sencillo del ítem

dc.contributor.author Vallejo, Pedro M. es_ES
dc.contributor.author Vega, Pastora es_ES
dc.date.accessioned 2021-12-21T09:12:16Z
dc.date.available 2021-12-21T09:12:16Z
dc.date.issued 2021-12-17
dc.identifier.issn 1697-7912
dc.identifier.uri http://hdl.handle.net/10251/178682
dc.description.abstract [ES] En este trabajo se aborda la integración de dos métodos o estrategias de Control Predictivo basado en Modelos, a saber: Control Predictivo basado en Modelos Borrosos (FMBPC) y Control Predictivo en Lazo Cerrado (CLP MPC). La primera de estas estrategias utiliza principios de Control Predictivo Funcional (PFC) y está enmarcada, al mismo tiempo, en el ámbito del Control Inteligente (IC). La integración tiene como principal objetivo proporcionar a la estrategia de control no lineal FMBPC un procedimiento de optimización que permita el manejo automático de restricciones en la variable de control. La solución propuesta consiste en hacer uso de una estructura complementaria de tipo CLP MPC para determinar mediante optimización, en cada instante de muestreo, los valores óptimos de un cierto término aditivo, a sumar a la ley de control FMBPC, de tal modo que se satisfagan las restricciones. El modelo de predicciones y la ley de control base necesarios para realizar los cálculos en la estructura CLP MPC son proporcionados por la estrategia FMBPC. La estrategia mixta FMBPC/CLP propuesta ha sido validada, en simulación, aplicándola al control de fangos activados en plantas de tratamiento de aguas residuales (EDAR), poniendo el foco en la imposición de restricciones a la acción de control. Los resultados obtenidos son satisfactorios, observando un buen rendimiento del algoritmo de control diseñado, al tiempo que se garantiza tanto la satisfacción de las restricciones, que era el principal objetivo, como la estabilidad del sistema en lazo cerrado. es_ES
dc.description.abstract [EN] This work addresses the integration of two methods or strategies of Model-Based Predictive Control, namely: Fuzzy Model-Based Predictive Control (FMBPC) and Closed-Loop Predictive Control (CLP-MPC). The first of these strategies uses principles of Predictive Functional Control (PFC) and is framed, at the same time, in the field of Intelligent Control (IC). The main objective of the integration is to provide to the FMBPC nonlinear control strategy an optimization procedure that allows the automatic handling of constraints in the control variable. The proposed solution consists of making use of a complementary structure of the CLP-MPC type to determine by optimization, at each sampling instant, the optimal values of a certain additive term, to be added to the FMBPC control law, in such a way that they are satisfied the constraints. The prediction model and base control law necessary to perform the calculations on the CLP-MPC structure are provided by the FMBPC strategy. The proposed FMBPC/CLP mixed strategy has been validated, in simulation, applying it to the control of activated sludge processes in wastewater treatment plants (WWTP), focusing on the imposition of constraints on the control action. The results obtained are satisfactory, observing a good performance of the designed control algorithm, while guaranteeing both the satisfaction of the constraints, which was the main objective, and the stability of the closed-loop system. es_ES
dc.description.sponsorship Este trabajo contó con el apoyo económico del Gobierno de España a través del proyecto MICINN PID2019-105434RB-C31 y de la Fundación Samuel Solórzano a través del proyecto FS / 20-2019. es_ES
dc.language Español es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Revista Iberoamericana de Automática e Informática industrial es_ES
dc.rights Reconocimiento - No comercial - Compartir igual (by-nc-sa) es_ES
dc.subject Model-based predictive control es_ES
dc.subject Fuzzy control and fuzzy systems in control es_ES
dc.subject Intelligent control techniques es_ES
dc.subject Control of systems with restrictions es_ES
dc.subject Multivariable control es_ES
dc.subject Automatic control of water treatment systems es_ES
dc.subject Control predictivo basado en modelo es_ES
dc.subject Control borroso y sistemas borrosos en control es_ES
dc.subject Técnicas de control inteligente es_ES
dc.subject Control de sistemas con restricciones es_ES
dc.subject Control multivariable es_ES
dc.subject Control automático de sistemas de tratamiento de aguas es_ES
dc.title Integración de la estrategia FMBPC en una estructura de control predictivo en lazo cerrado. Aplicación al control de fangos activados es_ES
dc.title.alternative Integration of the FMBPC strategy in a Closed-Loop Predictive Control structure. Application to the control of activated sludge es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/riai.2021.15793
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-105434RB-C31/ES/DESARROLLO DE TECNICAS DE CONTROL DISTRIBUIDO INTELIGENTE BASADAS EN TEORIA DE JUEGOS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Vallejo, PM.; Vega, P. (2021). Integración de la estrategia FMBPC en una estructura de control predictivo en lazo cerrado. Aplicación al control de fangos activados. Revista Iberoamericana de Automática e Informática industrial. 19(1):13-26. https://doi.org/10.4995/riai.2021.15793 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/riai.2021.15793 es_ES
dc.description.upvformatpinicio 13 es_ES
dc.description.upvformatpfin 26 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 19 es_ES
dc.description.issue 1 es_ES
dc.identifier.eissn 1697-7920
dc.relation.pasarela OJS\15793 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Adetola, V., & Guay, M., 2010. Integration of real-time optimization and model predictive control. Journal of Process Control, 20(2), 125-133. https://doi.org/10.1016/j.jprocont.2009.09.001 es_ES
dc.description.references Al-Gherwi, W., Budman, H., Elkamel, A., 2013. A robust distributed model predictive control based on a dual-mode approach. Computers and Chemical Engineering, 50, 130-138. https://doi.org/10.1016/j.compchemeng.2012.11.002 es_ES
dc.description.references Babuška, R., 1998a. Fuzzy Modeling for Control. Kluwer Academic Publishers, Boston, MA, USA. https://doi.org/10.1007/978-94-011-4868-9_2 es_ES
dc.description.references Babuška, R., 1998b. Fuzzy Modeling and Identification Toolbox (FMID)-User's Guide; Babuška, R., Delft, The Netherlands. es_ES
dc.description.references Blachini, F., 1999. Set invariance in control. Automatica, 35, 1747-1767. https://doi.org/10.1016/S0005-1098(99)00113-2 es_ES
dc.description.references Blažič, S., Škrjanc, I, 2007. Design and Stability Analysis of Fuzzy Model-based Predictive Control-A Case Study. J. Intell. Robot. Syst., 49, 279-292, https://doi.org/10.1007/s10846-007-9147-8 es_ES
dc.description.references Boulkaibet, I., Belarbi, K., Bououden, S., Marwala, T., Chadli, M., 2017. A new T-S fuzzy model predictive control for nonlinear processes. Expert Syst. Appl., 88, 132-151, https://doi.org/10.1016/j.eswa.2017.06.039 es_ES
dc.description.references Bououden, S., Chadli, M., Karimi, H., 2015. An ant colony optimization-based fuzzy predictive control approach for nonlinear processes. Inf. Sci., 299, 143-158, https://doi.org/10.1016/j.ins.2014.11.050 es_ES
dc.description.references Camacho, E. F., Bordons, C., 1998. Model Predictive Control. Springer, Great Britain. https://doi.org/10.1007/978-1-4471-3398-8 es_ES
dc.description.references El Bahja, H., 2017. Advanced control strategies based on invariance set theory and economic MPC: application to WWTP. Ph.D. Thesis, Universidad de Salamanca, Salamanca, Spain, 2017. es_ES
dc.description.references El Bahja, H., S.; Vega, P.; Revollar, S.; Francisco, M., 2018a. One Layer Nonlinear Economic Closed-Loop Generalized Predictive Control for a Wastewater Treatment Plant. Applied Sciences, 8(5), 657. https://doi.org/10.3390/app8050657 es_ES
dc.description.references El Bahja, H., Vega, P., Tadeo, F., & Francisco, M., 2018b. A constrained closed loop MPC based on positive invariance concept for a wastewater treatment plant. International Journal of Systems Science, 49(10), 2101-2115. https://doi.org/10.1080/00207721.2018.1484195 es_ES
dc.description.references Francisco, M., Vega, P., 2006. Diseño Integrado de procesos de depuración de aguas utilizando control predictivo basado en modelos. RIAI-Revista Iberoamericana de Automática e Informática Industrial, 3(4), 88-98, ISSN 1697 7912. https://doi.org/10.1016/S1697-7912(07)70214-5 es_ES
dc.description.references Gilbert, E.G., Tan, K. T., 1991. Linear systems with state and control constraints: the theory and application of maximal output admissible sets. IEEE Trans. AC, 36(9), 1008-1020. https://doi.org/10.1109/9.83532 es_ES
dc.description.references Haber, R., Rossiter, J.A., and Zabet, K.R., 2016. An Alternative for PID control: Predictive Functional Control- A Tutorial. IEEE American Control Conference (ACC), 2016 (ACC2016). Boston, MA, USA, July 06-08. https://doi.org/10.1109/ACC.2016.7526765 es_ES
dc.description.references Henze, M., Grady, C. P. L. Jr, Gujer, W., Marais, G. v. R., Matsuo, T., 1987. Activated Sludge Model No. 1. IAWPRC Scientific and Technical Reports No. 1. London, UK. es_ES
dc.description.references Limón, D., 2002. Control Predictivo de Sistemas no Lineales con Restricciones: Estabilidad y Robustez. Ph.D. Thesis, Universidad de Sevilla, Sevilla, Spain, 2002. es_ES
dc.description.references Lyapunov, A.M., 1892. The General Problem of the Stability of Motion (in Russian). Ph.D. Thesis, Kharkov Mathematical Society, Kharkov, Russia. es_ES
dc.description.references Lyapunov, A.M., 1992. The general problem of the stability of motion. Int. J. Control, 55, 531-534, https://doi.org/10.1080/00207179208934253 es_ES
dc.description.references Maciejowski, J. M., 2002. Predictive Control with Constraints. Pearson Education Limited, Harlow, Essex, UK. es_ES
dc.description.references Marchetti, A.G., Ferramosca, A. & González, A.H., 2014. Steady-state target optimization designs for integrating real-time optimization and model predictive control. Journal of Process, 24 (1) 129-145. https://doi.org/10.1016/j.jprocont.2013.11.004 es_ES
dc.description.references Michalska, H., Mayne, D., 1993. Robust receding horizon control of constrained nonlinear systems. IEEE Transactions on Automatic Control, 38, 1623-1633. https://doi.org/10.1109/9.262032 es_ES
dc.description.references Mollov, S., Babuska, R., Abonyi, J., Verbruggen, H., 2004. Effective Optimization for Fuzzy Model Predictive Control. IEEE Trans. Fuzzy Syst., 12, 661-675, https://doi.org/10.1109/TFUZZ.2004.834812 es_ES
dc.description.references Moreno, R., 1994. Estimación de Estados y Control Predictivo de Proceso de Fangos Activados. Tesis Doctoral. Facultat de Ciències de la Universitat Autònoma de Barcelona (Spain). es_ES
dc.description.references Ramírez, K. J. , Gómez, L. M., Álvarez, H., 2014. Dual mode nonlinear model based predictive control with guaranteed stability. Ingeniería y Competitividad, 16(1), 23-34. https://doi.org/10.25100/iyc.v16i1.3710 es_ES
dc.description.references Richalet, J., 1993. Industrial application of model based predictive control. Automatica, 29 (5), 1251-1274. https://doi.org/10.1016/0005-1098(93)90049-Y es_ES
dc.description.references Richalet, J., O'Donovan, D., 2009. Predictive Functional Control. Principles and Industrial Applications. Springer, London, UK. https://doi.org/10.1007/978-1-84882-493-5 es_ES
dc.description.references Rossiter, J. A., 2003. Model-Based Predictive Control: A Practical Approach. CRC Press LLC, Boca Raton, Florida, EEUU. es_ES
dc.description.references Roubos, J., Mollov, S., Babuska, R., Verbruggen, H., 1999. Fuzzy model-based predictive control using Takagi-Sugeno models. Int. J. Approx. Reason., 22, 3-30, https://doi.org/10.1016/S0888-613X(99)00020-1 es_ES
dc.description.references Shariati, S., Noske, R., Brockhinke, A., Abel, D., 2015. Model predictive control of combustion instabilities using Closed-loop Paradigm with an incorporated Padé approximation of a phase shifter. 2015 European Control Conference (ECC). July 15-17. Linz, Austria. https://doi.org/10.1109/ECC.2015.7330601 es_ES
dc.description.references Škrjanc, I., Matko, D., 2000. Predictive functional control based on fuzzy model for heat exchanger pilot plant. IEEE Transactions on Fuzzy Systems, 8 (6), 705-712. https://doi.org/10.1109/91.890329 es_ES
dc.description.references Škrjanc, I., Blažič, S., 2016. Fuzzy Model-based Control - Predictive and Adaptive Approaches. In: Angelov, Plamen (Ed.), Handbook on Computational Intelligence. Vol. I. World Scientific, New Jersey, USA, Ch. 6, pp. 209-240. https://doi.org/10.1142/9789814675017_0006 es_ES
dc.description.references Sorcia Vázquez, F. D. J., Garcia Beltran, C. D., Valencia Palomo, G., Guerrero Ramírez, G., Adam Medina, M., Escobar Jiménez, R., 2015. Control Predictivo Distribuido Óptimo Aplicado al Control de Nivel de un Proceso de Cuatro Tanques Acoplados. Revista Iberoamericana de Automática e Informática Industrial, 12, 365-375. https://doi.org/10.1016/j.riai.2015.07.002 es_ES
dc.description.references Takagi, T., Sugeno, M., 1985. Fuzzy Identification of Systems and its Application to Modeling and Control. IEEE Transactions on Systems, Man and Cybernetics, 15 (1), 116 132. https://doi.org/10.1109/TSMC.1985.6313399 es_ES
dc.description.references Vallejo, P. M., Vega, P., 2019. Analytical Fuzzy Predictive Control Applied to Wastewater Treatment Biological Processes. Complex., 2019, 5720185, https://doi.org/10.1155/2019/5720185 es_ES
dc.description.references Vallejo, P. M., Vega, P., 2021. Practical Computational Approach for the Stability Analysis of Fuzzy Model-Based Predictive Control of Substrate and Biomass in Activated Sludge Processes. Processes, 9(3), 531. https://doi.org/10.3390/pr9030531 es_ES
dc.description.references Zadeh, Lotfi A., 1990. Fuzzy Sets and Systems. International Journal of General Systems, 17 (2), 129-138. https://doi.org/10.1080/03081079008935104 es_ES
dc.relation.references 10.1016/j.jprocont.2009.09.001 es_ES
dc.relation.references 10.1016/j.compchemeng.2012.11.002 es_ES
dc.relation.references 10.1007/978-94-011-4868-9_2 es_ES
dc.relation.references 10.1016/S0005-1098(99)00113-2 es_ES
dc.relation.references 10.1007/s10846-007-9147-8 es_ES
dc.relation.references 10.1016/j.eswa.2017.06.039 es_ES
dc.relation.references 10.1016/j.ins.2014.11.050 es_ES
dc.relation.references 10.1007/978-1-4471-3398-8 es_ES
dc.relation.references 10.3390/app8050657 es_ES
dc.relation.references 10.1080/00207721.2018.1484195 es_ES
dc.relation.references 10.1016/S1697-7912(07)70214-5 es_ES
dc.relation.references 10.1109/9.83532 es_ES
dc.relation.references 10.1109/ACC.2016.7526765 es_ES
dc.relation.references 10.1080/00207179208934253 es_ES
dc.relation.references 10.1016/j.jprocont.2013.11.004 es_ES
dc.relation.references 10.1109/9.262032 es_ES
dc.relation.references 10.1109/TFUZZ.2004.834812 es_ES
dc.relation.references 10.25100/iyc.v16i1.3710 es_ES
dc.relation.references 10.1016/0005-1098(93)90049-Y es_ES
dc.relation.references 10.1007/978-1-84882-493-5 es_ES
dc.relation.references 10.1016/S0888-613X(99)00020-1 es_ES
dc.relation.references 10.1109/ECC.2015.7330601 es_ES
dc.relation.references 10.1109/91.890329 es_ES
dc.relation.references 10.1142/9789814675017_0006 es_ES
dc.relation.references 10.1016/j.riai.2015.07.002 es_ES
dc.relation.references 10.1109/TSMC.1985.6313399 es_ES
dc.relation.references 10.1155/2019/5720185 es_ES
dc.relation.references 10.3390/pr9030531 es_ES
dc.relation.references 10.1080/03081079008935104 es_ES


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

 

Tema móvil para Riunet