Riunet Móvil

Home Versión de escritorio

Control mediante rechazo activo de perturbaciones de la temperatura de un módulo termoeléctrico

Mostrar el registro sencillo del ítem

dc.contributor.author Barahona-Avalos, Jorge Luis es_ES
dc.contributor.author Juárez-Abad, José Antonio es_ES
dc.contributor.author Galván-Cruz, G. S. es_ES
dc.contributor.author Linares-Flores, Jesús es_ES
dc.date.accessioned 2021-12-21T10:38:48Z
dc.date.available 2021-12-21T10:38:48Z
dc.date.issued 2021-12-17
dc.identifier.issn 1697-7912
dc.identifier.uri http://hdl.handle.net/10251/178692
dc.description.abstract [EN] This article presents an active disturbance rejection approach for the control of the temperature in the cold face of a thermoelectric module fed by a type buck DC-DC converter. The dynamics of the module is seen as a disturbance of an unknown nature and varying in time, of the output voltage of the converter. Said disturbance is estimated by means of a generalized proportional integral type observer, which in combination with the controller allows to regulate the temperature on the cold face of the thermoelectric module to a desired constant value. The designed observer simultaneously estimates the step-down converter output voltage and the exogenous disturbance in an on-line cancellation scheme, known as active disturbance rejection control. For comparison purposes, a proportional integral type controller and a linear quadratic regulator are designed, based on an approximate linearization of the combined dynamic model of the buck converter and the module. The experimental results were obtained by means of an experimental prototype and allow to show the effectiveness of proposed control technique for this type of thermoelectric devices. es_ES
dc.description.abstract [ES] Este artículo presenta una aproximación mediante rechazo activo de perturbaciones para controlar, de manera indirecta, la temperatura de la cara fría de un módulo termoeléctrico alimentado por un convertidor CD-CD tipo reductor. La dinámica del módulo, es vista como una perturbación de naturaleza desconocida y variante en el tiempo, del voltaje de salida del convertidor. Dicha perturbación es estimada mediante un observador de tipo proporcional integral generalizado, el cual en combinación con el controlador permite regular la temperatura en la cara fría del módulo termoeléctrico a un valor constante deseado. El observador diseñado estima de manera simultánea el voltaje de salida del convertidor reductor y la perturbación exógena en un esquema de cancelación en línea, conocido como control mediante rechazo activo de perturbaciones. Para propósitos de comparación, se diseñan un controlador de tipo proporcional integral y un regulador cuadrático lineal, sobre la base de una linealización aproximada del modelo dinámico combinado del convertidor reductor y del módulo. Los resultados  experimentales que se obtuvieron mediante un prototipo experimental, permiten mostrar la efectividad de la técnica de control propuesta para este tipo de dispositivos termoeléctricos. es_ES
dc.description.sponsorship Este trabajo ha sido realizado gracias al apoyo de la Universidad Tecnológica de la Mixteca. es_ES
dc.language Español es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Revista Iberoamericana de Automática e Informática industrial es_ES
dc.rights Reconocimiento - No comercial - Compartir igual (by-nc-sa) es_ES
dc.subject Thermoelectric module es_ES
dc.subject Active disturbance rejection es_ES
dc.subject GPI observer es_ES
dc.subject Módulo termoeléctrico es_ES
dc.subject Rechazo activo de perturbaciones es_ES
dc.subject Observador GPI es_ES
dc.title Control mediante rechazo activo de perturbaciones de la temperatura de un módulo termoeléctrico es_ES
dc.title.alternative Active disturbance rejection control of temperature of thermoelectric module es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/riai.2021.14728
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Barahona-Avalos, JL.; Juárez-Abad, JA.; Galván-Cruz, GS.; Linares-Flores, J. (2021). Control mediante rechazo activo de perturbaciones de la temperatura de un módulo termoeléctrico. Revista Iberoamericana de Automática e Informática industrial. 19(1):48-60. https://doi.org/10.4995/riai.2021.14728 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/riai.2021.14728 es_ES
dc.description.upvformatpinicio 48 es_ES
dc.description.upvformatpfin 60 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 19 es_ES
dc.description.issue 1 es_ES
dc.identifier.eissn 1697-7920
dc.relation.pasarela OJS\14728 es_ES
dc.description.references Casano, G., Piva, S., 2016. Peltier cells cooling system for switch mode power supply. In: 2016 22nd International Workshop on Thermal Investigations of ICs and Systems (THERMINIC). IEEE, pp. 279-282. https://doi.org/10.1109/THERMINIC.2016.7749066 es_ES
dc.description.references Castillo, A., García, P., Sanz, R., Albertos, P., 2018. Enhanced extended state observer-based control for systems with mismatched uncertainties and disturbances. ISA transactions 73, 1-10. https://doi.org/10.1016/j.isatra.2017.12.005 es_ES
dc.description.references Celil Yavuz, S. Y., Kaya, M., 2013. The design of computer controlled cold and hot therapy device with thermoelectric module. American Scientific Publishers,3, 221-226. https://doi.org/10.1166/jmihi.2013.1159 es_ES
dc.description.references Chavez, J., Ortega, J., Salazar, J., Turo, A., Garcia, M. J., 2000. Spice model of thermoelectric elements including thermal effects. In: Proceedings of the 17th IEEE Instrumentation and Measurement Technology Conference [Cat.No. 00CH37066]. Vol. 2. IEEE, pp. 1019-1023. es_ES
dc.description.references Chen, C., Wang, Y., Li, S., 2017. Generalized proportional integral observer based composite control method for robotic thermal tactile sensor with disturbances. International Journal of Advanced Robotic Systems. https://doi.org/10.1177/1729881417710033 es_ES
dc.description.references Deng, M., Wen, S., Inoue, A., 2011. Operator-based robust nonlinear control for a peltier actuated process. Measurement and Control 44 (4), 116-120. https://doi.org/10.1177/002029401104400404 es_ES
dc.description.references Dubreuil, V., Osintsev, A. V., 2019. Designing multiple pid controllers based on an fpga for controlling the temperature of tem-cell surfaces. In: 2019, International Multi-Conference on Engineering, Computer and Information Sciences (SIBIRCON). IEEE, pp. 0194-0198. https://doi.org/10.1109/SIBIRCON48586.2019.8958396 es_ES
dc.description.references Gao, Z., 2010. On disturbance rejection paradigm in control engineering. In: Proceedings of the 29th Chinese Control Conference. pp. 6071-6076. es_ES
dc.description.references Guo, L., Cao, S., 2014. Anti-disturbance control theory for systems with multiple disturbances: A survey. ISA transactions 53 (4), 846-849. https://doi.org/10.1016/j.isatra.2013.10.005 es_ES
dc.description.references Han, J.-Q., 1999. Nonlinear design methods for control systems. IFAC Proceedings Volumes 32 (2), 1531-1536. https://doi.org/10.1016/S1474-6670(17)56259-X es_ES
dc.description.references Jahangir, M., Rehman, M. A. U., Awan, A. B., Ali, R. H., 2019. Design and testing of cooling jacket using peltier plate. In: 2019 International Conference on Applied and Engineering Mathematics (ICAEM). IEEE, pp. 191-196. https://doi.org/10.1109/ICAEM.2019.8853654 es_ES
dc.description.references Jianzhong, Z., Hua, Z., Song, W. T., Zhaonan, J., 1997. A method of diode parallel to improve the reliability of the thermoelectric coolers. 16th International Conference on Thermoelectrics, 690-692. es_ES
dc.description.references Li, C., Jiao, D., Jia, J., Guo, F.,Wang, J., Nov 2014. Thermoelectric cooling for power electronics circuits: Modeling and active temperature control. IEEE Transactions on Industry Applications 50 (6), 3995-4005. https://doi.org/10.1109/TIA.2014.2319576 es_ES
dc.description.references Li, S., Yang, J., Chen, W.-H., Chen, X., 2011. Generalized extended state observer based control for systems with mismatched uncertainties. IEEE Transactions on Industrial Electronics 59 (12), 4792-4802. https://doi.org/10.1109/TIE.2011.2182011 es_ES
dc.description.references Lineykin, S., Ben-Yaakov, S., 2005. Analysis of thermoelectric coolers by a spice-compatible equivalent-circuit model. IEEE Power Electronics Letters, 3 (2), 63-66. https://doi.org/10.1109/LPEL.2005.846822 es_ES
dc.description.references Lineykin, S., Ben-Yaakov, S., 2007. Modeling and analysis of thermoelectric modules. IEEE Transactions on Industry Applications 43, 505-512. https://doi.org/10.1109/TIA.2006.889813 es_ES
dc.description.references Mardini-Bovea, J., Torres-Díaz, G., Sabau, M., De-la Hoz-Franco, E., Niño Moreno, J., Pacheco-Torres, P. J., 2019. A review to refrigeration with thermoelectric energy based on the peltier effect. Dyna 86 (208), 9-18. https://doi.org/10.15446/dyna.v86n208.72589 es_ES
dc.description.references Marquez, H. J., 2003. Nonlinear control systems. John Wiley & Sons. Martinez A., A. D., P., A., 2016. Thermoelectric self-cooling for power electronics: Increasing the cooling power. Energy, Elsevier 112, 1-7. https://doi.org/10.1016/j.energy.2016.06.007 es_ES
dc.description.references Marusa, L., Milanovic, M., Valderrama-Blavi, H., 2015. Evaluating a switched capacitor-boost converter (sc-bc) for energy harvesting in a peltier-cells thermoelectric system. In: 2015 International Conference on Electrical Drives and Power Electronics (EDPE). IEEE, pp. 227-234. https://doi.org/10.1109/EDPE.2015.7325298 es_ES
dc.description.references Mironova, A., Haus, B., Mercorelli, P., 2018. Combination of a reduced order state observer and an extended kalman filter for peltier cells. In: 2018 19th International Carpathian Control Conference (ICCC). IEEE, pp. 211-216. https://doi.org/10.1109/CarpathianCC.2018.8399630 es_ES
dc.description.references Mironova, A., Haus, B., Zedler, A., Mercorelli, P., 2020. Extended kalman filter for temperature estimation and control of peltier cells in a novel industrial milling process. IEEE Transactions on Industry Applications 56 (2), 1670-1678. https://doi.org/10.1109/TIA.2020.2965058 es_ES
dc.description.references Najafi, H., Woodbury, K. A., 2013. Optimization of a cooling system based on peltier effect for photovoltaic cells. Solar Energy 91, 52 - 160. https://doi.org/10.1016/j.solener.2013.01.026 es_ES
dc.description.references Parvathy, R., Daniel, A. E., 2013. A survey on active disturbance rejection control. In: 2013 International Mutli-Conference on Automation, Computing, Communication, Control and Compressed Sensing (iMac4s). IEEE, pp. 330-335. https://doi.org/10.1109/iMac4s.2013.6526432 es_ES
dc.description.references Qi, Y., Li, Z., Zhang, J., 2003. Peltier temperature controlled box for test circuit board. In: Proceedings ICT'03. 22nd International Conference on Thermoelectrics (IEEE Cat. No. 03TH8726). IEEE, pp. 644-647. es_ES
dc.description.references Rowe, D., 2006. Thermoelectrics handbook: macro to nano. CRC Press. Sontag, E. D., Wang, Y., 1995. On characterizations of the input-to-state stability property. Systems and Control letters 24 (5), 351-360. https://doi.org/10.1016/0167-6911(94)00050-6 es_ES
dc.description.references Sira-Ramirez, H., Luviano-Juarez, A., Cortés-Romero, J., 2011. Control lineal robusto de sistemas no lineales diferencialmente planos. Revista Iberoamericana de Automatica e Informática Industrial RIAI 8 (1), 14-28. https://doi.org/10.1016/S1697-7912(11)70004-8 es_ES
dc.description.references Sira-Ramirez, H., Oliver-Salazar, M. A., 2012. On the robust control of buckconverter dc-motor combinations. IEEE Transactions on Power Electronics 28 (8), 3912-3922. https://doi.org/10.1109/TPEL.2012.2227806 es_ES
dc.description.references Sontag, E. D., Wang, Y., 1995. On characterizations of the input-to-state stability property. Systems and Control letters 24 (5), 351-360. https://doi.org/10.1016/0167-6911(94)00050-6 es_ES
dc.description.references Spengler, A., Ferreira, E., Siqueira Dias, J. A., 01 2011. A low power, battery operated precision portable thermal chamber with double thermoelectric module. International Journal of Circuits, Systems and Signal Processing 5, 627-634. es_ES
dc.description.references Thakor, M. D., Hadia, S., Kumar, A., 2015. Precise temperature control through thermoelectric cooler with pid controller. In: 2015 International Conference on Communications and Signal Processing (ICCSP). IEEE, pp. 1118-1122. https://doi.org/10.1109/ICCSP.2015.7322677 es_ES
dc.relation.references 10.1109/THERMINIC.2016.7749066 es_ES
dc.relation.references 10.1016/j.isatra.2017.12.005 es_ES
dc.relation.references 10.1166/jmihi.2013.1159 es_ES
dc.relation.references 10.1177/1729881417710033 es_ES
dc.relation.references 10.1177/002029401104400404 es_ES
dc.relation.references 10.1109/SIBIRCON48586.2019.8958396 es_ES
dc.relation.references 10.1016/j.isatra.2013.10.005 es_ES
dc.relation.references 10.1016/S1474-6670(17)56259-X es_ES
dc.relation.references 10.1109/ICAEM.2019.8853654 es_ES
dc.relation.references 10.1109/TIA.2014.2319576 es_ES
dc.relation.references 10.1109/TIE.2011.2182011 es_ES
dc.relation.references 10.1109/LPEL.2005.846822 es_ES
dc.relation.references 10.1109/TIA.2006.889813 es_ES
dc.relation.references 10.15446/dyna.v86n208.72589 es_ES
dc.relation.references 10.1016/j.energy.2016.06.007 es_ES
dc.relation.references 10.1109/EDPE.2015.7325298 es_ES
dc.relation.references 10.1109/CarpathianCC.2018.8399630 es_ES
dc.relation.references 10.1109/TIA.2020.2965058 es_ES
dc.relation.references 10.1016/j.solener.2013.01.026 es_ES
dc.relation.references 10.1109/iMac4s.2013.6526432 es_ES
dc.relation.references 10.1016/S1697-7912(11)70004-8 es_ES
dc.relation.references 10.1109/TPEL.2012.2227806 es_ES
dc.relation.references 10.1016/0167-6911(94)00050-6 es_ES
dc.relation.references 10.1109/ICCSP.2015.7322677 es_ES


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

 

Tema móvil para Riunet