Mostrar el registro sencillo del ítem
dc.contributor.author | Barahona-Avalos, Jorge Luis | es_ES |
dc.contributor.author | Juárez-Abad, José Antonio | es_ES |
dc.contributor.author | Galván-Cruz, G. S. | es_ES |
dc.contributor.author | Linares-Flores, Jesús | es_ES |
dc.date.accessioned | 2021-12-21T10:38:48Z | |
dc.date.available | 2021-12-21T10:38:48Z | |
dc.date.issued | 2021-12-17 | |
dc.identifier.issn | 1697-7912 | |
dc.identifier.uri | http://hdl.handle.net/10251/178692 | |
dc.description.abstract | [EN] This article presents an active disturbance rejection approach for the control of the temperature in the cold face of a thermoelectric module fed by a type buck DC-DC converter. The dynamics of the module is seen as a disturbance of an unknown nature and varying in time, of the output voltage of the converter. Said disturbance is estimated by means of a generalized proportional integral type observer, which in combination with the controller allows to regulate the temperature on the cold face of the thermoelectric module to a desired constant value. The designed observer simultaneously estimates the step-down converter output voltage and the exogenous disturbance in an on-line cancellation scheme, known as active disturbance rejection control. For comparison purposes, a proportional integral type controller and a linear quadratic regulator are designed, based on an approximate linearization of the combined dynamic model of the buck converter and the module. The experimental results were obtained by means of an experimental prototype and allow to show the effectiveness of proposed control technique for this type of thermoelectric devices. | es_ES |
dc.description.abstract | [ES] Este artículo presenta una aproximación mediante rechazo activo de perturbaciones para controlar, de manera indirecta, la temperatura de la cara fría de un módulo termoeléctrico alimentado por un convertidor CD-CD tipo reductor. La dinámica del módulo, es vista como una perturbación de naturaleza desconocida y variante en el tiempo, del voltaje de salida del convertidor. Dicha perturbación es estimada mediante un observador de tipo proporcional integral generalizado, el cual en combinación con el controlador permite regular la temperatura en la cara fría del módulo termoeléctrico a un valor constante deseado. El observador diseñado estima de manera simultánea el voltaje de salida del convertidor reductor y la perturbación exógena en un esquema de cancelación en línea, conocido como control mediante rechazo activo de perturbaciones. Para propósitos de comparación, se diseñan un controlador de tipo proporcional integral y un regulador cuadrático lineal, sobre la base de una linealización aproximada del modelo dinámico combinado del convertidor reductor y del módulo. Los resultados experimentales que se obtuvieron mediante un prototipo experimental, permiten mostrar la efectividad de la técnica de control propuesta para este tipo de dispositivos termoeléctricos. | es_ES |
dc.description.sponsorship | Este trabajo ha sido realizado gracias al apoyo de la Universidad Tecnológica de la Mixteca. | es_ES |
dc.language | Español | es_ES |
dc.publisher | Universitat Politècnica de València | es_ES |
dc.relation.ispartof | Revista Iberoamericana de Automática e Informática industrial | es_ES |
dc.rights | Reconocimiento - No comercial - Compartir igual (by-nc-sa) | es_ES |
dc.subject | Thermoelectric module | es_ES |
dc.subject | Active disturbance rejection | es_ES |
dc.subject | GPI observer | es_ES |
dc.subject | Módulo termoeléctrico | es_ES |
dc.subject | Rechazo activo de perturbaciones | es_ES |
dc.subject | Observador GPI | es_ES |
dc.title | Control mediante rechazo activo de perturbaciones de la temperatura de un módulo termoeléctrico | es_ES |
dc.title.alternative | Active disturbance rejection control of temperature of thermoelectric module | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.4995/riai.2021.14728 | |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Barahona-Avalos, JL.; Juárez-Abad, JA.; Galván-Cruz, GS.; Linares-Flores, J. (2021). Control mediante rechazo activo de perturbaciones de la temperatura de un módulo termoeléctrico. Revista Iberoamericana de Automática e Informática industrial. 19(1):48-60. https://doi.org/10.4995/riai.2021.14728 | es_ES |
dc.description.accrualMethod | OJS | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/riai.2021.14728 | es_ES |
dc.description.upvformatpinicio | 48 | es_ES |
dc.description.upvformatpfin | 60 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 19 | es_ES |
dc.description.issue | 1 | es_ES |
dc.identifier.eissn | 1697-7920 | |
dc.relation.pasarela | OJS\14728 | es_ES |
dc.description.references | Casano, G., Piva, S., 2016. Peltier cells cooling system for switch mode power supply. In: 2016 22nd International Workshop on Thermal Investigations of ICs and Systems (THERMINIC). IEEE, pp. 279-282. https://doi.org/10.1109/THERMINIC.2016.7749066 | es_ES |
dc.description.references | Castillo, A., García, P., Sanz, R., Albertos, P., 2018. Enhanced extended state observer-based control for systems with mismatched uncertainties and disturbances. ISA transactions 73, 1-10. https://doi.org/10.1016/j.isatra.2017.12.005 | es_ES |
dc.description.references | Celil Yavuz, S. Y., Kaya, M., 2013. The design of computer controlled cold and hot therapy device with thermoelectric module. American Scientific Publishers,3, 221-226. https://doi.org/10.1166/jmihi.2013.1159 | es_ES |
dc.description.references | Chavez, J., Ortega, J., Salazar, J., Turo, A., Garcia, M. J., 2000. Spice model of thermoelectric elements including thermal effects. In: Proceedings of the 17th IEEE Instrumentation and Measurement Technology Conference [Cat.No. 00CH37066]. Vol. 2. IEEE, pp. 1019-1023. | es_ES |
dc.description.references | Chen, C., Wang, Y., Li, S., 2017. Generalized proportional integral observer based composite control method for robotic thermal tactile sensor with disturbances. International Journal of Advanced Robotic Systems. https://doi.org/10.1177/1729881417710033 | es_ES |
dc.description.references | Deng, M., Wen, S., Inoue, A., 2011. Operator-based robust nonlinear control for a peltier actuated process. Measurement and Control 44 (4), 116-120. https://doi.org/10.1177/002029401104400404 | es_ES |
dc.description.references | Dubreuil, V., Osintsev, A. V., 2019. Designing multiple pid controllers based on an fpga for controlling the temperature of tem-cell surfaces. In: 2019, International Multi-Conference on Engineering, Computer and Information Sciences (SIBIRCON). IEEE, pp. 0194-0198. https://doi.org/10.1109/SIBIRCON48586.2019.8958396 | es_ES |
dc.description.references | Gao, Z., 2010. On disturbance rejection paradigm in control engineering. In: Proceedings of the 29th Chinese Control Conference. pp. 6071-6076. | es_ES |
dc.description.references | Guo, L., Cao, S., 2014. Anti-disturbance control theory for systems with multiple disturbances: A survey. ISA transactions 53 (4), 846-849. https://doi.org/10.1016/j.isatra.2013.10.005 | es_ES |
dc.description.references | Han, J.-Q., 1999. Nonlinear design methods for control systems. IFAC Proceedings Volumes 32 (2), 1531-1536. https://doi.org/10.1016/S1474-6670(17)56259-X | es_ES |
dc.description.references | Jahangir, M., Rehman, M. A. U., Awan, A. B., Ali, R. H., 2019. Design and testing of cooling jacket using peltier plate. In: 2019 International Conference on Applied and Engineering Mathematics (ICAEM). IEEE, pp. 191-196. https://doi.org/10.1109/ICAEM.2019.8853654 | es_ES |
dc.description.references | Jianzhong, Z., Hua, Z., Song, W. T., Zhaonan, J., 1997. A method of diode parallel to improve the reliability of the thermoelectric coolers. 16th International Conference on Thermoelectrics, 690-692. | es_ES |
dc.description.references | Li, C., Jiao, D., Jia, J., Guo, F.,Wang, J., Nov 2014. Thermoelectric cooling for power electronics circuits: Modeling and active temperature control. IEEE Transactions on Industry Applications 50 (6), 3995-4005. https://doi.org/10.1109/TIA.2014.2319576 | es_ES |
dc.description.references | Li, S., Yang, J., Chen, W.-H., Chen, X., 2011. Generalized extended state observer based control for systems with mismatched uncertainties. IEEE Transactions on Industrial Electronics 59 (12), 4792-4802. https://doi.org/10.1109/TIE.2011.2182011 | es_ES |
dc.description.references | Lineykin, S., Ben-Yaakov, S., 2005. Analysis of thermoelectric coolers by a spice-compatible equivalent-circuit model. IEEE Power Electronics Letters, 3 (2), 63-66. https://doi.org/10.1109/LPEL.2005.846822 | es_ES |
dc.description.references | Lineykin, S., Ben-Yaakov, S., 2007. Modeling and analysis of thermoelectric modules. IEEE Transactions on Industry Applications 43, 505-512. https://doi.org/10.1109/TIA.2006.889813 | es_ES |
dc.description.references | Mardini-Bovea, J., Torres-Díaz, G., Sabau, M., De-la Hoz-Franco, E., Niño Moreno, J., Pacheco-Torres, P. J., 2019. A review to refrigeration with thermoelectric energy based on the peltier effect. Dyna 86 (208), 9-18. https://doi.org/10.15446/dyna.v86n208.72589 | es_ES |
dc.description.references | Marquez, H. J., 2003. Nonlinear control systems. John Wiley & Sons. Martinez A., A. D., P., A., 2016. Thermoelectric self-cooling for power electronics: Increasing the cooling power. Energy, Elsevier 112, 1-7. https://doi.org/10.1016/j.energy.2016.06.007 | es_ES |
dc.description.references | Marusa, L., Milanovic, M., Valderrama-Blavi, H., 2015. Evaluating a switched capacitor-boost converter (sc-bc) for energy harvesting in a peltier-cells thermoelectric system. In: 2015 International Conference on Electrical Drives and Power Electronics (EDPE). IEEE, pp. 227-234. https://doi.org/10.1109/EDPE.2015.7325298 | es_ES |
dc.description.references | Mironova, A., Haus, B., Mercorelli, P., 2018. Combination of a reduced order state observer and an extended kalman filter for peltier cells. In: 2018 19th International Carpathian Control Conference (ICCC). IEEE, pp. 211-216. https://doi.org/10.1109/CarpathianCC.2018.8399630 | es_ES |
dc.description.references | Mironova, A., Haus, B., Zedler, A., Mercorelli, P., 2020. Extended kalman filter for temperature estimation and control of peltier cells in a novel industrial milling process. IEEE Transactions on Industry Applications 56 (2), 1670-1678. https://doi.org/10.1109/TIA.2020.2965058 | es_ES |
dc.description.references | Najafi, H., Woodbury, K. A., 2013. Optimization of a cooling system based on peltier effect for photovoltaic cells. Solar Energy 91, 52 - 160. https://doi.org/10.1016/j.solener.2013.01.026 | es_ES |
dc.description.references | Parvathy, R., Daniel, A. E., 2013. A survey on active disturbance rejection control. In: 2013 International Mutli-Conference on Automation, Computing, Communication, Control and Compressed Sensing (iMac4s). IEEE, pp. 330-335. https://doi.org/10.1109/iMac4s.2013.6526432 | es_ES |
dc.description.references | Qi, Y., Li, Z., Zhang, J., 2003. Peltier temperature controlled box for test circuit board. In: Proceedings ICT'03. 22nd International Conference on Thermoelectrics (IEEE Cat. No. 03TH8726). IEEE, pp. 644-647. | es_ES |
dc.description.references | Rowe, D., 2006. Thermoelectrics handbook: macro to nano. CRC Press. Sontag, E. D., Wang, Y., 1995. On characterizations of the input-to-state stability property. Systems and Control letters 24 (5), 351-360. https://doi.org/10.1016/0167-6911(94)00050-6 | es_ES |
dc.description.references | Sira-Ramirez, H., Luviano-Juarez, A., Cortés-Romero, J., 2011. Control lineal robusto de sistemas no lineales diferencialmente planos. Revista Iberoamericana de Automatica e Informática Industrial RIAI 8 (1), 14-28. https://doi.org/10.1016/S1697-7912(11)70004-8 | es_ES |
dc.description.references | Sira-Ramirez, H., Oliver-Salazar, M. A., 2012. On the robust control of buckconverter dc-motor combinations. IEEE Transactions on Power Electronics 28 (8), 3912-3922. https://doi.org/10.1109/TPEL.2012.2227806 | es_ES |
dc.description.references | Sontag, E. D., Wang, Y., 1995. On characterizations of the input-to-state stability property. Systems and Control letters 24 (5), 351-360. https://doi.org/10.1016/0167-6911(94)00050-6 | es_ES |
dc.description.references | Spengler, A., Ferreira, E., Siqueira Dias, J. A., 01 2011. A low power, battery operated precision portable thermal chamber with double thermoelectric module. International Journal of Circuits, Systems and Signal Processing 5, 627-634. | es_ES |
dc.description.references | Thakor, M. D., Hadia, S., Kumar, A., 2015. Precise temperature control through thermoelectric cooler with pid controller. In: 2015 International Conference on Communications and Signal Processing (ICCSP). IEEE, pp. 1118-1122. https://doi.org/10.1109/ICCSP.2015.7322677 | es_ES |
dc.relation.references | 10.1109/THERMINIC.2016.7749066 | es_ES |
dc.relation.references | 10.1016/j.isatra.2017.12.005 | es_ES |
dc.relation.references | 10.1166/jmihi.2013.1159 | es_ES |
dc.relation.references | 10.1177/1729881417710033 | es_ES |
dc.relation.references | 10.1177/002029401104400404 | es_ES |
dc.relation.references | 10.1109/SIBIRCON48586.2019.8958396 | es_ES |
dc.relation.references | 10.1016/j.isatra.2013.10.005 | es_ES |
dc.relation.references | 10.1016/S1474-6670(17)56259-X | es_ES |
dc.relation.references | 10.1109/ICAEM.2019.8853654 | es_ES |
dc.relation.references | 10.1109/TIA.2014.2319576 | es_ES |
dc.relation.references | 10.1109/TIE.2011.2182011 | es_ES |
dc.relation.references | 10.1109/LPEL.2005.846822 | es_ES |
dc.relation.references | 10.1109/TIA.2006.889813 | es_ES |
dc.relation.references | 10.15446/dyna.v86n208.72589 | es_ES |
dc.relation.references | 10.1016/j.energy.2016.06.007 | es_ES |
dc.relation.references | 10.1109/EDPE.2015.7325298 | es_ES |
dc.relation.references | 10.1109/CarpathianCC.2018.8399630 | es_ES |
dc.relation.references | 10.1109/TIA.2020.2965058 | es_ES |
dc.relation.references | 10.1016/j.solener.2013.01.026 | es_ES |
dc.relation.references | 10.1109/iMac4s.2013.6526432 | es_ES |
dc.relation.references | 10.1016/S1697-7912(11)70004-8 | es_ES |
dc.relation.references | 10.1109/TPEL.2012.2227806 | es_ES |
dc.relation.references | 10.1016/0167-6911(94)00050-6 | es_ES |
dc.relation.references | 10.1109/ICCSP.2015.7322677 | es_ES |