Riunet Móvil

Home Versión de escritorio

Modelado de un AGV híbrido triciclo-diferencial

Mostrar el registro sencillo del ítem

dc.contributor.author Sánchez, Roberto es_ES
dc.contributor.author Sierra-García, Jesús Enrique es_ES
dc.contributor.author Santos, Matilde es_ES
dc.date.accessioned 2021-12-21T10:56:02Z
dc.date.available 2021-12-21T10:56:02Z
dc.date.issued 2021-12-17
dc.identifier.issn 1697-7912
dc.identifier.uri http://hdl.handle.net/10251/178696
dc.description.abstract [EN] In the industrial field, Automatic Guided Vehicles (AGV) are frequently used for the transport of goods, usually replacing manual means of transport or conveyor belts, to reduce operating costs and human errors in this way. In order to increase the performance of these industrial systems and enable more advanced applications, it is key to develop control-oriented models to test new strategies and control techniques, with the aim of making them safer and more efficient. Thus, in this work a kinematic and dynamic control-oriented model of an AGV is developed. The main objective of this work is to obtain a mathematical representation of the complex dynamics of the AGV Easybot, a hybrid tricycle-differential vehicle, which will allow us to study the effects of towed load and wheel-ground interaction. To do so, the kinematic models of the differential and the tricycle robot have been developed and combined together with the developed vehicle dynamics model. The AGV has been split into its different components and the Newton-Euler equations have been applied to obtain the equations of its dynamics. The model has been validated in simulation for different trajectories, varying the speed and the load. es_ES
dc.description.abstract [ES] En el ámbito industrial se utilizan con frecuencia Vehículos de Guiado Automático (AGV) para el transporte de mercancía puntual, normalmente sustituyendo a los medios de transporte manuales o a las cintas transportadoras, para así reducir costes operativos y errores humanos. Para aumentar el rendimiento de estos sistemas industriales y que puedan realizar funcionalidades más avanzadas, es fundamental desarrollar modelos orientados al control que permitan probar nuevas estrategias y técnicas de control que los hagan más eficientes y seguros. Para ello, en este trabajo se desarrolla un modelo cinemático y dinámico orientado al control de un AGV. El principal objetivo del trabajo es conseguir una representación matemática de la compleja dinámica del AGV Easybot, un vehículo híbrido triciclo-diferencial, que permita estudiar los efectos de carga remolcada y la interacción rueda-suelo. Para ello se ha desarrollado el modelo cinemático de la parte diferencial y del triciclo, y se han combinado ambos entre sí y con el desarrollo de la dinámica del vehículo. Se ha descompuesto el AGV en sus distintos módulos y se han aplicado las ecuaciones de Newton-Euler para obtener las ecuaciones de su comportamiento dinámico. El modelo se ha validado en simulación para diferentes trayectorias, variando la carga y la velocidad. es_ES
dc.language Español es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Revista Iberoamericana de Automática e Informática industrial es_ES
dc.rights Reconocimiento - No comercial - Compartir igual (by-nc-sa) es_ES
dc.subject Modelado y simulación es_ES
dc.subject AGV es_ES
dc.subject Triciclo es_ES
dc.subject Diferencial es_ES
dc.subject Modelo Dinámico es_ES
dc.subject Cinemática es_ES
dc.subject Robots Autónomos es_ES
dc.subject Modelling and simulation es_ES
dc.subject Tricycle es_ES
dc.subject Differential es_ES
dc.subject Dynamic model es_ES
dc.subject Kinematics es_ES
dc.subject Autonomous Robots es_ES
dc.title Modelado de un AGV híbrido triciclo-diferencial es_ES
dc.title.alternative Modelling of a hybrid differential-tricycle AGV es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/riai.2021.14622
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Sánchez, R.; Sierra-García, JE.; Santos, M. (2021). Modelado de un AGV híbrido triciclo-diferencial. Revista Iberoamericana de Automática e Informática industrial. 19(1):84-95. https://doi.org/10.4995/riai.2021.14622 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/riai.2021.14622 es_ES
dc.description.upvformatpinicio 84 es_ES
dc.description.upvformatpfin 95 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 19 es_ES
dc.description.issue 1 es_ES
dc.identifier.eissn 1697-7920
dc.relation.pasarela OJS\14622 es_ES
dc.description.references Abderrahim, M., Bekrar, A., Trentesaux, D., Aissani, N., & Bouamrane, K. (2020). Manufacturing 4.0 Operations Scheduling with AGV Battery Management Constraints. Energies, 13(18), 4948. https://doi.org/10.3390/en13184948 es_ES
dc.description.references ASTI MOBILE ROBOTICS, S. (2021). ASTI - Mobile Robotics. Astimobilerobotics.com. Retrieved 12 February 2021, from https://www.astimobilerobotics.com/. es_ES
dc.description.references Bi, Z. M., Lang, S. Y., & Wang, L. (2008). Improved control and simulation models of a tricycle collaborative robot. Journal of Intelligent Manufacturing, 19(6), 715-722. https://doi.org/10.1007/s10845-008-0122-4 es_ES
dc.description.references Belman-López, C. E., Jiménez-García, J. A., & Hernández-González, S. (2020). Análisis exhaustivo de los principios de diseño en el contexto de Industria 4.0. Revista Iberoamericana de Automática e Informática Industrial, 17(4), 432-447. https://doi.org/10.4995/riai.2020.12579 es_ES
dc.description.references Bonilla, I., Reyes, F., & Mendoza, M. (2005). Modelling and simulation of a wheeled mobile robot in configuration classical tricycle. In 5th WSEAS International Conference on Instrumentation, Measurement, Control, Circuits and Systems. Cancún, México. es_ES
dc.description.references Espinosa, F., Santos, C., & Sierra-García, J. E. (2021). Transporte multi-AGV de una carga: estado del arte y propuesta centralizada. Revista Iberoamericana de Automática e Informática industrial, 18(1), 82-91. https://doi.org/10.4995/riai.2020.12846 es_ES
dc.description.references Galasso, F., Rizzini, D. L., Oleari, F., & Caselli, S. (2019). Efficient calibration of four wheel industrial AGVs. Robotics and Computer-Integrated Manufacturing, 57, 116-128. https://doi.org/10.1016/j.rcim.2018.11.005 es_ES
dc.description.references García, J. M., Valero, A., & Bohórquez, A. (2020). Efecto de la suspensión en la estabilidad al vuelco y direccionamiento de robots moviéndose sobre discontinuidades de terreno. Revista Iberoamericana de Automática e Informática industrial, 17(2), 202-214. https://doi.org/10.4995/riai.2020.12308 es_ES
dc.description.references Guney, M. A., & Raptis, I. (2020). Dynamic prioritized motion coordination of multi-AGV systems. Robotics and Autonomous Systems, 103534. https://doi.org/10.1016/j.robot.2020.103534 es_ES
dc.description.references Han, K., Choi, M., & Choi, S. B. (2018). Estimation of the tire cornering stiffness as a road surface classification indicator using understeering characteristics. IEEE Transactions on Vehicular Technology, 67(8), 6851-6860. https://doi.org/10.1109/TVT.2018.2820094 es_ES
dc.description.references Landau, L. D., & Lifshitz, E. M. (2013). Course of theoretical physics. Elsevier. es_ES
dc.description.references Li, G., Lin, R., Li, M., Sun, R., & Piao, S. (2019). A master-slave separate parallel intelligent mobile robot used for autonomous pallet transportation. Applied Sciences, 9(3), 368. https://doi.org/10.3390/app9030368 es_ES
dc.description.references Markets and markets 2021. (https://www.marketsandmarkets.com/MarketReports/automated-guided-vehicle-market-27462395.html) es_ES
dc.description.references Madrigal Moreno, S. A., & Muñoz Ceballos, N. D. (2019). Vehículos de guiado autónomo (AGV) en aplicaciones industriales: una revisión. Revista Politécnica, 15(28), 117-137. https://doi.org/10.33571/rpolitec.v15n28a11 es_ES
dc.description.references Niestrój, R., Rogala, T., & Skarka, W. (2020). An Energy Consumption Model for Designing an AGV Energy Storage System with a PEMFC Stack. Energies, 13(13), 3435. https://doi.org/10.3390/en13133435 es_ES
dc.description.references Nguyen, H. H., Nguyen, T. T., Nguyen, T. T., & Phan, H. L. (2020, December). Kinematic Model Reference Adaptive Controller for a Lurking Type Automated Guided Vehicle using Traction Drive Unit. In 2020 International Conference on Advanced Mechatronic Systems (ICAMechS) (pp. 108-112). IEEE. es_ES
dc.description.references Sierra, J. E., & Santos, M. (2018). Modelling engineering systems using analytical and neural techniques: Hybridization. Neurocomputing, 271, 70-83. https://doi.org/10.1016/j.neucom.2016.11.099 es_ES
dc.description.references Sierra-García, J. E., & Santos, M. (2020a). Mechatronic modelling of industrial AGVs: A complex system architecture. Complexity, Article ID 6687816, 2020. https://doi.org/10.1155/2020/6687816 es_ES
dc.description.references Sierra-García, J. E., & Santos, M. (2020b, September). Control of Industrial AGV Based on Reinforcement Learning. In International Workshop or Soft Computing Models in Industrial and Environmental Applications (pp. 647-656). Springer, Cham. https://doi.org/10.1007/978-3-030-57802-2_62 es_ES
dc.description.references Smieszek, M., Dobrzanska, M., & Dobrzanski, P. (2019). The impact of load on the wheel rolling radius and slip in a small mobile platform. Autonomous Robots, 43(8), 2095-2109. https://doi.org/10.1007/s10514-019-09857-0 es_ES
dc.description.references Smieszek, M., Dobrzanska, M., & Dobrzanski, P. (2020). Measurement of wheel radius in an automated guided vehicle. Applied Sciences, 10(16), 5490. https://doi.org/10.3390/app10165490 es_ES
dc.description.references Statista 2021 (https://www.statista.com/statistics/882696/global-agv-marketvolume/#:~:text=In%202018%2C%20it%20was%20estimated,e%2Dcommerce%20companies%20and%20hospitals ). es_ES
dc.description.references Suárez, J. I., Vinagre, B. M., Gutiérrez, F., Naranjo, J. E., & Chen, Y. Q. (2004, July). Dynamics models of an AGV Based on Experimental Results. In Proc. of the 5th IFAC Symposium on Intelligent Autonomous Vehicles. https://doi.org/10.1016/S1474-6670(17)31987-0 es_ES
dc.description.references Veiga, J., Sousa, J., Machado, J., Mendonça, J., Machado, T., & Silva, P. (2019, April). Modeling of Dynamic Behavior of AGV systems. In 2019 6th International Conference on Control, Decision and Information Technologies (CoDIT) (pp. 1307-1312). IEEE. https://doi.org/10.1109/CoDIT.2019.8820528 es_ES
dc.description.references Villagra, J., & Herrero-Pérez, D. (2011). A comparison of control techniques for robust docking maneuvers of an AGV. IEEE Transactions on Control Systems Technology, 20(4), 1116-1123. https://doi.org/10.1109/TCST.2011.2159794 es_ES
dc.description.references Weckx, S., Vandewal, B., Rademakers, E., Janssen, K., Geebelen, K., Wan, J.,... & van Nunen, E. (2020). Open Experimental AGV Platform for Dynamic Obstacle Avoidance in Narrow Corridors. In 2020 IEEE Intelligent Vehicles Symposium (IV) (pp. 844-851). IEEE. https://doi.org/10.1109/IV47402.2020.9304749 es_ES
dc.description.references Wu, X., Sun, C., Zou, T., Xiao, H., Wang, L., & Zhai, J. (2019). Intelligent path recognition against image noises for vision guidance of automated guided vehicles in a complex workspace. Applied Sciences, 9(19), 4108. https://doi.org/10.3390/app9194108 es_ES
dc.description.references Yuan, Z., Yang, Z., Lv, L., & Shi, Y. (2020). A Bi-Level Path Planning Algorithm for Multi-AGV Routing Problem. Electronics, 9(9), 1351. https://doi.org/10.3390/electronics9091351 es_ES
dc.description.references Yun, D. U. (2016). Kinematics and Dynamic Modeling and Simulation Analysis of Three-wheeled Mobile Robot. 2016 MDM International Conference on Mechanics Design, Manufacturing and Automation. es_ES
dc.description.references Zhang, J., & Liu-Henke, X. (2020, July). Model-based design of the vehicle dynamics control for an omnidirectional automated guided vehicle (agv). In 2020 International Conference Mechatronic Systems and Materials (MSM) (pp. 1-6). IEEE. https://doi.org/10.1109/MSM49833.2020.9202248 es_ES
dc.relation.references 10.3390/en13184948 es_ES
dc.relation.references 10.1007/s10845-008-0122-4 es_ES
dc.relation.references 10.4995/riai.2020.12579 es_ES
dc.relation.references 10.4995/riai.2020.12846 es_ES
dc.relation.references 10.1016/j.rcim.2018.11.005 es_ES
dc.relation.references 10.4995/riai.2020.12308 es_ES
dc.relation.references 10.1016/j.robot.2020.103534 es_ES
dc.relation.references 10.1109/TVT.2018.2820094 es_ES
dc.relation.references 10.3390/app9030368 es_ES
dc.relation.references 10.33571/rpolitec.v15n28a11 es_ES
dc.relation.references 10.3390/en13133435 es_ES
dc.relation.references 10.1016/j.neucom.2016.11.099 es_ES
dc.relation.references 10.1155/2020/6687816 es_ES
dc.relation.references 10.1007/978-3-030-57802-2_62 es_ES
dc.relation.references 10.1007/s10514-019-09857-0 es_ES
dc.relation.references 10.3390/app10165490 es_ES
dc.relation.references 10.1016/S1474-6670(17)31987-0 es_ES
dc.relation.references 10.1109/CoDIT.2019.8820528 es_ES
dc.relation.references 10.1109/TCST.2011.2159794 es_ES
dc.relation.references 10.1109/IV47402.2020.9304749 es_ES
dc.relation.references 10.3390/app9194108 es_ES
dc.relation.references 10.3390/electronics9091351 es_ES
dc.relation.references 10.1109/MSM49833.2020.9202248 es_ES


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

 

Tema móvil para Riunet