Mostrar el registro sencillo del ítem
dc.contributor.author | Sánchez, Roberto | es_ES |
dc.contributor.author | Sierra-García, Jesús Enrique | es_ES |
dc.contributor.author | Santos, Matilde | es_ES |
dc.date.accessioned | 2021-12-21T10:56:02Z | |
dc.date.available | 2021-12-21T10:56:02Z | |
dc.date.issued | 2021-12-17 | |
dc.identifier.issn | 1697-7912 | |
dc.identifier.uri | http://hdl.handle.net/10251/178696 | |
dc.description.abstract | [EN] In the industrial field, Automatic Guided Vehicles (AGV) are frequently used for the transport of goods, usually replacing manual means of transport or conveyor belts, to reduce operating costs and human errors in this way. In order to increase the performance of these industrial systems and enable more advanced applications, it is key to develop control-oriented models to test new strategies and control techniques, with the aim of making them safer and more efficient. Thus, in this work a kinematic and dynamic control-oriented model of an AGV is developed. The main objective of this work is to obtain a mathematical representation of the complex dynamics of the AGV Easybot, a hybrid tricycle-differential vehicle, which will allow us to study the effects of towed load and wheel-ground interaction. To do so, the kinematic models of the differential and the tricycle robot have been developed and combined together with the developed vehicle dynamics model. The AGV has been split into its different components and the Newton-Euler equations have been applied to obtain the equations of its dynamics. The model has been validated in simulation for different trajectories, varying the speed and the load. | es_ES |
dc.description.abstract | [ES] En el ámbito industrial se utilizan con frecuencia Vehículos de Guiado Automático (AGV) para el transporte de mercancía puntual, normalmente sustituyendo a los medios de transporte manuales o a las cintas transportadoras, para así reducir costes operativos y errores humanos. Para aumentar el rendimiento de estos sistemas industriales y que puedan realizar funcionalidades más avanzadas, es fundamental desarrollar modelos orientados al control que permitan probar nuevas estrategias y técnicas de control que los hagan más eficientes y seguros. Para ello, en este trabajo se desarrolla un modelo cinemático y dinámico orientado al control de un AGV. El principal objetivo del trabajo es conseguir una representación matemática de la compleja dinámica del AGV Easybot, un vehículo híbrido triciclo-diferencial, que permita estudiar los efectos de carga remolcada y la interacción rueda-suelo. Para ello se ha desarrollado el modelo cinemático de la parte diferencial y del triciclo, y se han combinado ambos entre sí y con el desarrollo de la dinámica del vehículo. Se ha descompuesto el AGV en sus distintos módulos y se han aplicado las ecuaciones de Newton-Euler para obtener las ecuaciones de su comportamiento dinámico. El modelo se ha validado en simulación para diferentes trayectorias, variando la carga y la velocidad. | es_ES |
dc.language | Español | es_ES |
dc.publisher | Universitat Politècnica de València | es_ES |
dc.relation.ispartof | Revista Iberoamericana de Automática e Informática industrial | es_ES |
dc.rights | Reconocimiento - No comercial - Compartir igual (by-nc-sa) | es_ES |
dc.subject | Modelado y simulación | es_ES |
dc.subject | AGV | es_ES |
dc.subject | Triciclo | es_ES |
dc.subject | Diferencial | es_ES |
dc.subject | Modelo Dinámico | es_ES |
dc.subject | Cinemática | es_ES |
dc.subject | Robots Autónomos | es_ES |
dc.subject | Modelling and simulation | es_ES |
dc.subject | Tricycle | es_ES |
dc.subject | Differential | es_ES |
dc.subject | Dynamic model | es_ES |
dc.subject | Kinematics | es_ES |
dc.subject | Autonomous Robots | es_ES |
dc.title | Modelado de un AGV híbrido triciclo-diferencial | es_ES |
dc.title.alternative | Modelling of a hybrid differential-tricycle AGV | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.4995/riai.2021.14622 | |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Sánchez, R.; Sierra-García, JE.; Santos, M. (2021). Modelado de un AGV híbrido triciclo-diferencial. Revista Iberoamericana de Automática e Informática industrial. 19(1):84-95. https://doi.org/10.4995/riai.2021.14622 | es_ES |
dc.description.accrualMethod | OJS | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/riai.2021.14622 | es_ES |
dc.description.upvformatpinicio | 84 | es_ES |
dc.description.upvformatpfin | 95 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 19 | es_ES |
dc.description.issue | 1 | es_ES |
dc.identifier.eissn | 1697-7920 | |
dc.relation.pasarela | OJS\14622 | es_ES |
dc.description.references | Abderrahim, M., Bekrar, A., Trentesaux, D., Aissani, N., & Bouamrane, K. (2020). Manufacturing 4.0 Operations Scheduling with AGV Battery Management Constraints. Energies, 13(18), 4948. https://doi.org/10.3390/en13184948 | es_ES |
dc.description.references | ASTI MOBILE ROBOTICS, S. (2021). ASTI - Mobile Robotics. Astimobilerobotics.com. Retrieved 12 February 2021, from https://www.astimobilerobotics.com/. | es_ES |
dc.description.references | Bi, Z. M., Lang, S. Y., & Wang, L. (2008). Improved control and simulation models of a tricycle collaborative robot. Journal of Intelligent Manufacturing, 19(6), 715-722. https://doi.org/10.1007/s10845-008-0122-4 | es_ES |
dc.description.references | Belman-López, C. E., Jiménez-García, J. A., & Hernández-González, S. (2020). Análisis exhaustivo de los principios de diseño en el contexto de Industria 4.0. Revista Iberoamericana de Automática e Informática Industrial, 17(4), 432-447. https://doi.org/10.4995/riai.2020.12579 | es_ES |
dc.description.references | Bonilla, I., Reyes, F., & Mendoza, M. (2005). Modelling and simulation of a wheeled mobile robot in configuration classical tricycle. In 5th WSEAS International Conference on Instrumentation, Measurement, Control, Circuits and Systems. Cancún, México. | es_ES |
dc.description.references | Espinosa, F., Santos, C., & Sierra-García, J. E. (2021). Transporte multi-AGV de una carga: estado del arte y propuesta centralizada. Revista Iberoamericana de Automática e Informática industrial, 18(1), 82-91. https://doi.org/10.4995/riai.2020.12846 | es_ES |
dc.description.references | Galasso, F., Rizzini, D. L., Oleari, F., & Caselli, S. (2019). Efficient calibration of four wheel industrial AGVs. Robotics and Computer-Integrated Manufacturing, 57, 116-128. https://doi.org/10.1016/j.rcim.2018.11.005 | es_ES |
dc.description.references | García, J. M., Valero, A., & Bohórquez, A. (2020). Efecto de la suspensión en la estabilidad al vuelco y direccionamiento de robots moviéndose sobre discontinuidades de terreno. Revista Iberoamericana de Automática e Informática industrial, 17(2), 202-214. https://doi.org/10.4995/riai.2020.12308 | es_ES |
dc.description.references | Guney, M. A., & Raptis, I. (2020). Dynamic prioritized motion coordination of multi-AGV systems. Robotics and Autonomous Systems, 103534. https://doi.org/10.1016/j.robot.2020.103534 | es_ES |
dc.description.references | Han, K., Choi, M., & Choi, S. B. (2018). Estimation of the tire cornering stiffness as a road surface classification indicator using understeering characteristics. IEEE Transactions on Vehicular Technology, 67(8), 6851-6860. https://doi.org/10.1109/TVT.2018.2820094 | es_ES |
dc.description.references | Landau, L. D., & Lifshitz, E. M. (2013). Course of theoretical physics. Elsevier. | es_ES |
dc.description.references | Li, G., Lin, R., Li, M., Sun, R., & Piao, S. (2019). A master-slave separate parallel intelligent mobile robot used for autonomous pallet transportation. Applied Sciences, 9(3), 368. https://doi.org/10.3390/app9030368 | es_ES |
dc.description.references | Markets and markets 2021. (https://www.marketsandmarkets.com/MarketReports/automated-guided-vehicle-market-27462395.html) | es_ES |
dc.description.references | Madrigal Moreno, S. A., & Muñoz Ceballos, N. D. (2019). Vehículos de guiado autónomo (AGV) en aplicaciones industriales: una revisión. Revista Politécnica, 15(28), 117-137. https://doi.org/10.33571/rpolitec.v15n28a11 | es_ES |
dc.description.references | Niestrój, R., Rogala, T., & Skarka, W. (2020). An Energy Consumption Model for Designing an AGV Energy Storage System with a PEMFC Stack. Energies, 13(13), 3435. https://doi.org/10.3390/en13133435 | es_ES |
dc.description.references | Nguyen, H. H., Nguyen, T. T., Nguyen, T. T., & Phan, H. L. (2020, December). Kinematic Model Reference Adaptive Controller for a Lurking Type Automated Guided Vehicle using Traction Drive Unit. In 2020 International Conference on Advanced Mechatronic Systems (ICAMechS) (pp. 108-112). IEEE. | es_ES |
dc.description.references | Sierra, J. E., & Santos, M. (2018). Modelling engineering systems using analytical and neural techniques: Hybridization. Neurocomputing, 271, 70-83. https://doi.org/10.1016/j.neucom.2016.11.099 | es_ES |
dc.description.references | Sierra-García, J. E., & Santos, M. (2020a). Mechatronic modelling of industrial AGVs: A complex system architecture. Complexity, Article ID 6687816, 2020. https://doi.org/10.1155/2020/6687816 | es_ES |
dc.description.references | Sierra-García, J. E., & Santos, M. (2020b, September). Control of Industrial AGV Based on Reinforcement Learning. In International Workshop or Soft Computing Models in Industrial and Environmental Applications (pp. 647-656). Springer, Cham. https://doi.org/10.1007/978-3-030-57802-2_62 | es_ES |
dc.description.references | Smieszek, M., Dobrzanska, M., & Dobrzanski, P. (2019). The impact of load on the wheel rolling radius and slip in a small mobile platform. Autonomous Robots, 43(8), 2095-2109. https://doi.org/10.1007/s10514-019-09857-0 | es_ES |
dc.description.references | Smieszek, M., Dobrzanska, M., & Dobrzanski, P. (2020). Measurement of wheel radius in an automated guided vehicle. Applied Sciences, 10(16), 5490. https://doi.org/10.3390/app10165490 | es_ES |
dc.description.references | Statista 2021 (https://www.statista.com/statistics/882696/global-agv-marketvolume/#:~:text=In%202018%2C%20it%20was%20estimated,e%2Dcommerce%20companies%20and%20hospitals ). | es_ES |
dc.description.references | Suárez, J. I., Vinagre, B. M., Gutiérrez, F., Naranjo, J. E., & Chen, Y. Q. (2004, July). Dynamics models of an AGV Based on Experimental Results. In Proc. of the 5th IFAC Symposium on Intelligent Autonomous Vehicles. https://doi.org/10.1016/S1474-6670(17)31987-0 | es_ES |
dc.description.references | Veiga, J., Sousa, J., Machado, J., Mendonça, J., Machado, T., & Silva, P. (2019, April). Modeling of Dynamic Behavior of AGV systems. In 2019 6th International Conference on Control, Decision and Information Technologies (CoDIT) (pp. 1307-1312). IEEE. https://doi.org/10.1109/CoDIT.2019.8820528 | es_ES |
dc.description.references | Villagra, J., & Herrero-Pérez, D. (2011). A comparison of control techniques for robust docking maneuvers of an AGV. IEEE Transactions on Control Systems Technology, 20(4), 1116-1123. https://doi.org/10.1109/TCST.2011.2159794 | es_ES |
dc.description.references | Weckx, S., Vandewal, B., Rademakers, E., Janssen, K., Geebelen, K., Wan, J.,... & van Nunen, E. (2020). Open Experimental AGV Platform for Dynamic Obstacle Avoidance in Narrow Corridors. In 2020 IEEE Intelligent Vehicles Symposium (IV) (pp. 844-851). IEEE. https://doi.org/10.1109/IV47402.2020.9304749 | es_ES |
dc.description.references | Wu, X., Sun, C., Zou, T., Xiao, H., Wang, L., & Zhai, J. (2019). Intelligent path recognition against image noises for vision guidance of automated guided vehicles in a complex workspace. Applied Sciences, 9(19), 4108. https://doi.org/10.3390/app9194108 | es_ES |
dc.description.references | Yuan, Z., Yang, Z., Lv, L., & Shi, Y. (2020). A Bi-Level Path Planning Algorithm for Multi-AGV Routing Problem. Electronics, 9(9), 1351. https://doi.org/10.3390/electronics9091351 | es_ES |
dc.description.references | Yun, D. U. (2016). Kinematics and Dynamic Modeling and Simulation Analysis of Three-wheeled Mobile Robot. 2016 MDM International Conference on Mechanics Design, Manufacturing and Automation. | es_ES |
dc.description.references | Zhang, J., & Liu-Henke, X. (2020, July). Model-based design of the vehicle dynamics control for an omnidirectional automated guided vehicle (agv). In 2020 International Conference Mechatronic Systems and Materials (MSM) (pp. 1-6). IEEE. https://doi.org/10.1109/MSM49833.2020.9202248 | es_ES |
dc.relation.references | 10.3390/en13184948 | es_ES |
dc.relation.references | 10.1007/s10845-008-0122-4 | es_ES |
dc.relation.references | 10.4995/riai.2020.12579 | es_ES |
dc.relation.references | 10.4995/riai.2020.12846 | es_ES |
dc.relation.references | 10.1016/j.rcim.2018.11.005 | es_ES |
dc.relation.references | 10.4995/riai.2020.12308 | es_ES |
dc.relation.references | 10.1016/j.robot.2020.103534 | es_ES |
dc.relation.references | 10.1109/TVT.2018.2820094 | es_ES |
dc.relation.references | 10.3390/app9030368 | es_ES |
dc.relation.references | 10.33571/rpolitec.v15n28a11 | es_ES |
dc.relation.references | 10.3390/en13133435 | es_ES |
dc.relation.references | 10.1016/j.neucom.2016.11.099 | es_ES |
dc.relation.references | 10.1155/2020/6687816 | es_ES |
dc.relation.references | 10.1007/978-3-030-57802-2_62 | es_ES |
dc.relation.references | 10.1007/s10514-019-09857-0 | es_ES |
dc.relation.references | 10.3390/app10165490 | es_ES |
dc.relation.references | 10.1016/S1474-6670(17)31987-0 | es_ES |
dc.relation.references | 10.1109/CoDIT.2019.8820528 | es_ES |
dc.relation.references | 10.1109/TCST.2011.2159794 | es_ES |
dc.relation.references | 10.1109/IV47402.2020.9304749 | es_ES |
dc.relation.references | 10.3390/app9194108 | es_ES |
dc.relation.references | 10.3390/electronics9091351 | es_ES |
dc.relation.references | 10.1109/MSM49833.2020.9202248 | es_ES |