Mostrar el registro sencillo del ítem
dc.contributor.author | Mora, Juan Pablo | es_ES |
dc.contributor.author | Samper, Julián | es_ES |
dc.contributor.author | Rodriguez, Carlos F. | es_ES |
dc.date.accessioned | 2023-01-12T11:14:18Z | |
dc.date.available | 2023-01-12T11:14:18Z | |
dc.date.issued | 2022-12-28 | |
dc.identifier.issn | 1697-7912 | |
dc.identifier.uri | http://hdl.handle.net/10251/191276 | |
dc.description.abstract | [EN] Given the growth of installed units of robotic manipulators, and the sustainability requirements, the study of the power consumption has become indispensable. An energy consumption minimization strategy, based on the design of a point-to-point (PP) trajectory, is studied. Bayesian optimization, which allows to work with a mathematical model, as well as experimentation in a prototype, is used. First, a kinetical model based on the concept of virtual work and the Bayesian optimization method are presented. Second, the energy consumption of generic trajectories is compared to that of the solution found from traditional optimization methods, which use multipoint trajectories from splines and PP trajectories, and Bayesian optimization results, that uses PP trajectories. That analysis finds that traditional optimization methods with the multipoint approach result in the lowest energy consumption computational estimation. Nevertheless, the experimental tests confirm that the Bayesian optimization model, with real data feedback, can find the best solution in terms of the experimental estimation of energy consumption, thanks to the consideration of dynamics that were not modeled in the mathematical model. | es_ES |
dc.description.abstract | [ES] El aumento de unidades instaladas de robots industriales y los requerimientos de sostenibilidad exigen el estudio del consumo energético. Se propone una estrategia de reducción del consumo energético, basada en el diseño de una trayectoria punto a punto (PP). Se utiliza la optimización bayesiana que permite incluir información de un prototipo experimental en conjunto con un modelo matemático. Primero, se presenta el modelo cinético basado en el trabajo virtual y el problema de optimización bayesiana. Segundo, se realiza una comparación entre el consumo energético de trayectorias genéricas, métodos de optimización tradicionales, que utilizan trayectorias multi punto construidas por splines y trayectorias PP, y la optimización bayesiana propuesta, que utiliza una trayectoria PP. Se encuentra que en simulaciones computacionales los métodos tradicionales de optimización consiguen un consumo de energía menor que a través del método de optimización bayesiana. Sin embargo, a través de pruebas experimentales se verifica la ventaja del método de optimización bayesiana que, al incorporar datos reales del prototipo y dinámicas no modeladas, logran obtener un consumo energético menor. | es_ES |
dc.language | Español | es_ES |
dc.publisher | Universitat Politècnica de València | es_ES |
dc.relation.ispartof | Revista Iberoamericana de Automática e Informática industrial | es_ES |
dc.rights | Reconocimiento - No comercial - Compartir igual (by-nc-sa) | es_ES |
dc.subject | Bayesian optimization | es_ES |
dc.subject | Energy expenditure | es_ES |
dc.subject | Robot manipulators | es_ES |
dc.subject | Optimal trajectory | es_ES |
dc.subject | Robot dynamics | es_ES |
dc.subject | Optimización bayesiana | es_ES |
dc.subject | Consumo energético | es_ES |
dc.subject | Manipuladores robóticos | es_ES |
dc.subject | Trayectoria óptima | es_ES |
dc.subject | Dinámica de robots | es_ES |
dc.title | Estudio de la optimización bayesiana para reducir el consumo energético de un robot paralelo durante tareas pick and place | es_ES |
dc.title.alternative | Bayesian optimization study for energy consumption reduction of a parallel robot during pick and place tasks | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.4995/riai.2022.16724 | |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Mora, JP.; Samper, J.; Rodriguez, CF. (2022). Estudio de la optimización bayesiana para reducir el consumo energético de un robot paralelo durante tareas pick and place. Revista Iberoamericana de Automática e Informática industrial. 20(1):1-12. https://doi.org/10.4995/riai.2022.16724 | es_ES |
dc.description.accrualMethod | OJS | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/riai.2022.16724 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 12 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 20 | es_ES |
dc.description.issue | 1 | es_ES |
dc.identifier.eissn | 1697-7920 | |
dc.relation.pasarela | OJS\16724 | es_ES |
dc.description.references | Angeles, J. (2007). Trajectory Planning: Pick and Place Operations. En Fundamentals of Robotic Mechanical Systems (págs. 233-256). Montreal: Springer. https://doi.org/10.1007/978-3-319-01851-5 | es_ES |
dc.description.references | Aracil, R., Saltarén, R. J., Sabater, J. M., & Reinoso, Ó. (septiembre de 2010). Robots Paralelos: Máquinas con un Pasado para una Robótica del Futuro. Revista Iberoamericana de Automática e Informática industrial, v. 3, n. 1, p. 16-28. Recuperado el 22 de Noviembre de 2021, de https://polipapers.upv.es/index.php/RIAI/article/view/8105 | es_ES |
dc.description.references | Barreto, J. P. (2021). Exploiting the natural dynamics of parallel robots for energy-efficient pick-and-place tasks. RWTH Aachen University, Institute of Mechanism Theory, Machine Dynamics and Robotics (IGMR). Aachen: RWTH Aachen University. doi:https://doi.org/10.18154/RWTH-2021-05347 | es_ES |
dc.description.references | Brochu, E., Cora, V. M., & de Freitas, N. (2010). A Tutorial on Bayesian Optimization of Expensive Cost Functions, with Application to Active User Modeling and Hierarchical Reinforcement Learning. Cornell University, Computer Science. Machine Learning. Cornell University. Recuperado el 5 de Septiembre de 2021, de https://arxiv.org/abs/1012.2599 | es_ES |
dc.description.references | Carabin, G., Wehrle, E., & Vidoni, R. (2017). A Review on Energy-Saving Optimization Methods for Robotic and Automatic Systems. Robotics, 6(4), 39. https://doi.org/10.3390/robotics6040039 | es_ES |
dc.description.references | Dai, Y.-H. (2002). Convergence Properties of the BFGS Algorithm. SIAM Journal on Optimization, 13, 693-701. https://doi.org/10.1137/S1052623401383455 | es_ES |
dc.description.references | Dou, Z. (2015). Bayesian global optimization approach to the oil well placement problem with quantified uncertainties. Purdue University, Mechanical Engineering. Purdue University. Recuperado el 10 de Agosto de 2021, de https://docs.lib.purdue.edu/open_access_theses/530 | es_ES |
dc.description.references | Frazier, P. I. (2018). A Tutorial on Bayesian Optimization. Cornell University, Statistics. Machine Learning. Recuperado el 22 de Agosto de 2021, de https://arxiv.org/abs/1807.02811 | es_ES |
dc.description.references | He, T., Zhang, Y., Sun, F., & Shi, X. (2016). Immune optimization based multi-objective six-DOF trajectory planning forindustrial robot manipulators. 2016 12th World Congress on Intelligent Control and Automation (WCICA) (págs. 2945-2950). IEEE. https://doi.org/10.1109/WCICA.2016.7578610 | es_ES |
dc.description.references | International Federation of Robotics. (2020). Executive Summary World Robotics 2020 Industrial Robots. Recuperado el 11 de Marzo de 2021, de https://ifr.org/img/worldrobotics/Executive_Summary_WR_2020_Industrial_Robots_1.pdf | es_ES |
dc.description.references | International Federation of Robotics. (2021). Executive Summary World Robotics 2021 Industrial Robots. Recuperado el 10 de 11 de 2021, de https://ifr.org/img/worldrobotics/Executive_Summary_WR_Industrial_Robots_2021.pdf | es_ES |
dc.description.references | Lorenz, M., Paris, J., Schöler, F., Barreto, J. P., Mannheim, T., Hüsing, M., & Corves, B. (2017). Energy-Efficient Trajectory Planning for Robot Manipulators. ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Volume 5B: 41st Mechanisms and Robotics Conference. Cleveland, Ohio: ASME. https://doi.org/10.1115/DETC2017-67198 | es_ES |
dc.description.references | MathWorks. (2021). fminunc.Recuperado el 13 de 7 de 2021, de https://www.mathworks.com/help/optim/ug/fminunc.html#but9rn9-5 | es_ES |
dc.description.references | Mora, J. P. (2021). Estudio del movimiento natural en escenarios de tareas pick and place en un robot paralelo. Universidad de los Andes, Ingeniería Mecánica. Bogotá: Universidad de los Andes. Recuperado el 22 de Noviembre de 2021, de http://hdl.handle.net/1992/52889 | es_ES |
dc.description.references | Mora, J., Barreto, J. P., & Rodriguez, C. F. (2022). Energy Optimization of a Parallel Robot in Pick and Place Tasks. Pucheta M., Cardona A., Preidikman S., Hecker R. (eds) Multibody Mechatronic Systems. MuSMe 2021. Mechanisms and Machine Science. 110. Springer, Cham. https://doi.org/10.1007/978-3-030-88751-3_20 | es_ES |
dc.description.references | Rai, A., Antonova, R., Song, S., Martin, W., Geyer, H., & Atkeson, C. (2018). Bayesian Optimization Using Domain Knowledge on the ATRIAS Biped. 2018 IEEE International Conference on Robotics and Automation (ICRA) (págs. 1771-1778). IEEE. https://doi.org/10.1109/ICRA.2018.8461237 | es_ES |
dc.description.references | Reiter, A., Gattringer, H., & Müller, A. (2017). Real-time computation of inexact minimum-energy trajectories using parametric sensitivities. Ferraresi C., Quaglia G. (eds) Advances in Service and Industrial Robotics. RAAD 2017. Mechanisms and Machine Science. 49, págs. 174-182. Springer, Cham. https://doi.org/10.1007/978-3-319-61276-8_20 | es_ES |
dc.description.references | Samper, J. (2021). Optimización Bayesiana del Consumo Energético de un Mecanismo de 5 Barras. Universidad de los Andes, Ingeniería Mecánica. Bogotá: Universidad de los Andes. Recuperado el 22 de Noviembre de 2021, de http://hdl.handle.net/1992/53169 | es_ES |
dc.description.references | Snoek, J., Larochelle, H., & Adams, R. P. (2012). Practical Bayesian Optimization of Machine Learning Algorithms. Cornell University. Cornell University. Recuperado el 12 de Agosto de 2021, de https://arxiv.org/abs/1206.2944v2 | es_ES |
dc.description.references | SP Automation and Robotics. (2018). Pick and Place Automation / Robotic Material Handling. Recuperado el 10 de Junio de 2021, de https://sp-automation.co.uk/pick-place-application/ | es_ES |
dc.description.references | The European Business Review. (Septiembre de 2020). The role of industrial robots in global modern industries. Recuperado el 11 de Marzo de 2021, de https://www.europeanbusinessreview.com/the-role-of-industrial-robots-in-global-modern-industries/ | es_ES |
dc.relation.references | 10.1007/978-0-387-34580-2_6 | es_ES |
dc.relation.references | 10.3390/robotics6040039 | es_ES |
dc.relation.references | 10.1137/S1052623401383455 | es_ES |
dc.relation.references | 10.1109/WCICA.2016.7578610 | es_ES |
dc.relation.references | 10.1115/DETC2017-67198 | es_ES |
dc.relation.references | 10.1007/978-3-030-88751-3_20 | es_ES |
dc.relation.references | 10.1109/ICRA.2018.8461237 | es_ES |
dc.relation.references | 10.1007/978-3-319-61276-8_20 | es_ES |