Mostrar el registro sencillo del ítem
dc.contributor.author | García, Jesús M. | es_ES |
dc.contributor.author | Yánez, Pedro | es_ES |
dc.contributor.author | Martínez, Jorge E. | es_ES |
dc.date.accessioned | 2023-01-12T11:19:38Z | |
dc.date.available | 2023-01-12T11:19:38Z | |
dc.date.issued | 2022-12-28 | |
dc.identifier.issn | 1697-7912 | |
dc.identifier.uri | http://hdl.handle.net/10251/191277 | |
dc.description.abstract | [EN] The use of trailers allows robots to increase their load capacity to perform multiple tasks, but their use carries multiple risks. In this research, three metrics are developed to assess the navigability of robots with coupled trailers when moving at low speeds on inclined surfaces: an index that predicts the initiation of rollover in the robot or trailers; another index that estimates the start of the total slip due to the slopes of the terrain, either in the robot or the trailers; and finally, an index that quantifies the robot's ability to address itself and follow a path. These three metrics were developed based on the reaction forces of the wheels with the ground and were validated through simulation and experimental tests using a Skid Steer robot called Lázaro, demonstrating their effectiveness in estimating the risk condition for which they were designed. | es_ES |
dc.description.abstract | [ES] El uso de remolques permite a los robots aumentar su capacidad de carga para realizar múltiples tareas, pero su uso conlleva múltiples riesgos. En esta investigación, se desarrollan tres métricas para evaluar la navegabilidad de robots con remolques acoplados cuando se mueven a bajas velocidades sobre superficies inclinadas: un índice que predice el inicio del vuelco en el robot o los remolques; otro índice que estima el inicio del deslizamiento total debido a las inclinaciones del terreno, ya sea en el robot o los remolques; y finalmente, un índice que cuantifica la capacidad del robot para direccionarse y seguir una trayectoria. Estas tres métricas fueron desarrolladas con base en las fuerzas de reacción de las ruedas con el suelo y fueron validados a través de simulación y pruebas experimentales utilizando un robot Skid Steer llamado Lázaro, demostrándose su efectividad al estimar la condición de riesgo para la cual fueron diseñados. | es_ES |
dc.description.sponsorship | Este trabajo ha sido realizado parcialmente gracias al apoyo del Decanato de Investigación de la Universidad Nacional Experimental del Táchira bajo los proyectos No. 01-025-2016 y 01-004-2019. | es_ES |
dc.language | Español | es_ES |
dc.publisher | Universitat Politècnica de València | es_ES |
dc.relation.ispartof | Revista Iberoamericana de Automática e Informática industrial | es_ES |
dc.rights | Reconocimiento - No comercial - Compartir igual (by-nc-sa) | es_ES |
dc.subject | Navigability | es_ES |
dc.subject | Mobile robots | es_ES |
dc.subject | Tip-over stability | es_ES |
dc.subject | Steerability | es_ES |
dc.subject | Slide-down | es_ES |
dc.subject | Tractor trailer | es_ES |
dc.subject | Inclined terrain | es_ES |
dc.subject | Slope negotiation | es_ES |
dc.subject | Navegabilidad | es_ES |
dc.subject | Estabilidad al vuelco | es_ES |
dc.subject | Direccionamiento | es_ES |
dc.subject | Deslizamiento hacia abajo | es_ES |
dc.subject | Tractor-remolque | es_ES |
dc.subject | Terreno inclinado | es_ES |
dc.subject | Superación de pendientes | es_ES |
dc.subject | Robots móviles | es_ES |
dc.title | Evaluación de la navegabilidad en robots móviles skid-steer con remolques pasivos moviéndose sobre terrenos inclinados | es_ES |
dc.title.alternative | Evaluation of navigability in skid-steer mobile robots with passive trailers moving on sloping terrain | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.4995/riai.2022.17161 | |
dc.relation.projectID | info:eu-repo/grantAgreement/UNET//01-025-2016 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UNET//01-004-2019 | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | García, JM.; Yánez, P.; Martínez, JE. (2022). Evaluación de la navegabilidad en robots móviles skid-steer con remolques pasivos moviéndose sobre terrenos inclinados. Revista Iberoamericana de Automática e Informática industrial. 20(1):13-24. https://doi.org/10.4995/riai.2022.17161 | es_ES |
dc.description.accrualMethod | OJS | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/riai.2022.17161 | es_ES |
dc.description.upvformatpinicio | 13 | es_ES |
dc.description.upvformatpfin | 24 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 20 | es_ES |
dc.description.issue | 1 | es_ES |
dc.identifier.eissn | 1697-7920 | |
dc.relation.pasarela | OJS\17161 | es_ES |
dc.contributor.funder | Universidad Nacional Experimental del Táchira, Venezuela | es_ES |
dc.description.references | Abroshan, M. (2021). Integrated stability and tracking control system for autonomous vehicle-trailer systems. Ontario: University of Waterloo. | es_ES |
dc.description.references | Amezquita-Semprun, K., Del Rosario, M., & Chen, P. (2018). Dynamics model of a differential drive mobile robot towing an off-axle trailer. Int. J. Mech. Eng. Rob. Res , 7 (6), 583-589. DOI: 10.18178/ijmerr.7.6.583-589. https://doi.org/10.18178/ijmerr.7.6.583-589 | es_ES |
dc.description.references | Bako, S., Ige, B., Nasir, A., & Musa, N. (2021). Stability analysis of a semi-trailer articulated vehicle: a review. International Journal of Automotive Science and Technology , 5 (2), 131-140. DOI: 10.30939/ijastech..855733. https://doi.org/10.30939/ijastech..855733 | es_ES |
dc.description.references | García, J. M., Bohórquez, A., & Valero, A. (2020a). Efecto de la suspensión en el direccionamiento de un robot skid steer moviéndose sobre terrenos duros con diferente rugosidad. Ingenierías USBMed , 11 (1), 18-30. DOI: 10.21500/20275846.4380. https://doi.org/10.21500/20275846.4380 | es_ES |
dc.description.references | García, J. M., Bohórquez, A., & Valero, A. (2020b). Suspension effect in tip-over stability and steerability of robots moving on sloping terrains. IEEE Latin America Transactions , 18 (8), 1381-1389. DOI: 10.1109/TLA.2020.9111673. https://doi.org/10.1109/TLA.2020.9111673 | es_ES |
dc.description.references | García, J. M., Martínez, J. L., Mandow, A., & García-Cerezo, A. (2017a). Caster-leg aided maneuver for negotiating surface discontinuities with a wheeled skid-steer mobile robot. Robotics and Autonomous Systems , 91, 25-37. DOI: 10.1016/j.robot.2016.12.007. https://doi.org/10.1016/j.robot.2016.12.007 | es_ES |
dc.description.references | García, J. M., Martínez, J. L., Mandow, A., & García-Cerezo, A. (2017b). Slide-Down Prevention for Wheeled Mobile Robots on Slopes. 3rd International Conference on Mechatronics and Robotics Engineering, (págs. 1-6). Paris. DOI: 10.1145/3068796.3068820. https://doi.org/10.1145/3068796.3068820 | es_ES |
dc.description.references | García, J. M., Medina, I., Martínez, J. L., García-Cerezo, A., Linares, A., & Porras, C. (2017c). Lázaro: Robot Móvil dotado de Brazo para Contacto con el Suelo. Revista Iberoamericana de Automática e Informática Industrial , 14, 174-183. DOI: 10.1016/j.riai.2016.09.012. https://doi.org/10.1016/j.riai.2016.09.012 | es_ES |
dc.description.references | Go, Y., Yin, X., & Bowling, A. (2006). Navigability of multi-legged robots. IEEE/ASME Transactions on Mechatronics , 11 (1), 1-8. DOI: 10.1109/TMECH.2005.863361. https://doi.org/10.1109/TMECH.2005.863361 | es_ES |
dc.description.references | Guevara, L., Michałek, M., & Cheein, F. (2020). Collision risk reduction of N-trailer agricultural machinery by off-track minimization. Computers and electronics in agriculture , 178, 3-12. DOI: 10.1016/j.compag.2020.105757. https://doi.org/10.1016/j.compag.2020.105757 | es_ES |
dc.description.references | Hatano, M., & Obara, H. (2003). Stability evaluation for mobile manipulators using criteria based on reaction. SICE Annual Conference, (págs. 2050-2055). Fukui. | es_ES |
dc.description.references | Kassaeiyan, P., Tarvirdizadeh, B., & Alipour, K. (2019). Control of tractor-trailer wheeled robots considering self-collision effect and actuator saturation limitations. Mechanical Systems and Signal Processing , 127, 388-411. DOI: 10.1016/j.ymssp.2019.03.016. https://doi.org/10.1016/j.ymssp.2019.03.016 | es_ES |
dc.description.references | Khalaji, A., & Jalalnezhad, M. (2019). Control of a tractor-trailer robot subjected to wheel slip. Journal of Multi-body Dynamics , 0 (0), 1-12. DOI: 10.1177/1464419319839848. https://doi.org/10.1177/1464419319839848 | es_ES |
dc.description.references | Khalaji, A., & Moosavian, S. (2015). Modified transpose Jacobian control of a tractor-trailer wheeled robot. Journal of Mechanical Science and Technology , 29 (9), 3961-3969. DOI: 10.1007/s12206-015-0841-3. https://doi.org/10.1007/s12206-015-0841-3 | es_ES |
dc.description.references | Korayem, A., Khajepour, A., & Fidan, B. (2020). Vehicle-trailer lateral velocity estimation using constrained unscented transformation. Vehicle System Dynamics , 1-28. DOI: 10.1080/00423114.2020.1849745. https://doi.org/10.1080/00423114.2020.1849745 | es_ES |
dc.description.references | Kotur, P. (2019). Safe estimation of vehicle side-slip for an autonomous heavy vehicle. Göteborg: Chalmers University of Technology. | es_ES |
dc.description.references | Lewis, C. (1982). Industrial and business forecasting methods. Londres: Butterworths Publishing. | es_ES |
dc.description.references | Li, Z., Cheng, H., Ma, J., & Zhou, H. (2020). Research on parking control of semi-trailer truck. 4th CAA International Conference on Vehicular Control and Intelligence, (págs. 424-429). Hangzhou. DOI: 10.1109/CVCI51460.2020.9338617. https://doi.org/10.1109/CVCI51460.2020.9338617 | es_ES |
dc.description.references | Martínez, J. L., Morales, J., Mandow, A., & García-Cerezo, A. (2008). Steering limitations for a vehicle pulling passive trailers. IEEE Transactions on control systems technology , 16 (4), 809-818. DOI: 10.1109/TCST.2007.916293. https://doi.org/10.1109/TCST.2007.916293 | es_ES |
dc.description.references | Meghdari, A., Naderi, D., & Alam, M. (2005). Neural-network-based observer for real-time tipover estimation. Mechatronics , 15, 989-1004. DOI: 10.1016/j.mechatronics.2005.03.005. https://doi.org/10.1016/j.mechatronics.2005.03.005 | es_ES |
dc.description.references | Morales, J., Mandow, A., Martínez, J. L., Reina, A., & García-Cerezo, A. (2013a). Driver assistance system for passive multi-trailer vehicles with haptic steering limitations on the leading unit. Sensors , 13, 4485-4498. DOI:10.3390/s130404485. https://doi.org/10.3390/s130404485 | es_ES |
dc.description.references | Morales, J., Martínez, J. L., Mandow, A., & García-Cerezo, A. (2013b). Steering the last trailer as a virtual tractor for reversing vehicles with passive on- and off-axle hitches. IEEE Transactions on Industrial Electronics , 60 (12), 5729-5736. DOI: 10.1109/TIE.2013.2240631. https://doi.org/10.1109/TIE.2013.2240631 | es_ES |
dc.description.references | Morales, J., Martínez, J. L., Mandow, A., & Medina, I. (2009). Virtual steering limitations for reversing an articulated vehicle with off-axle passive trailers. 35th Annual Conference of IEEE Industrial Electronics, (págs. 2385-2390). Porto. DOI: 10.1109/IECON.2009.5415436. https://doi.org/10.1109/IECON.2009.5415436 | es_ES |
dc.description.references | Morales, J., Martínez, J. L., Mandow, A., Serón, J., & García-Cerezo, A. (2013c). Static tip-over stability analysis for a robotic vehicle with a single-axle trailer on slopes based on altered supporting polygons. IEEE/ASME Transactions on Mechatronics , 18 (2), 697-705. DOI: 10.1109/TMECH.2011.2181955. https://doi.org/10.1109/TMECH.2011.2181955 | es_ES |
dc.description.references | Pérez, W., Arroyave, J., & Acevedo, S. (2010). Determinacion experimental del coeficiente de fricción empleando sensores movimiento. Scientia et Technica , 16 (44), 357-362. DOI: 10.22517/23447214.1769. | es_ES |
dc.description.references | Shojaei, K. (2021). Intelligent coordinated control of an autonomous tractor-trailer and a combine harvester. European Journal of Control , 59, 82-98. DOI: 10.1016/J.EJCON.2021.02.005. https://doi.org/10.1016/j.ejcon.2021.02.005 | es_ES |
dc.description.references | Song, T., Xi, F., Guo, S., Tu, X., & Li, X. (2018). Slip Analysis for a Wheeled Mobile Manipulator. Journal of Dynamic Systems Measurement and Control , 140, 1-12. DOI: 10.1115/1.4037287. https://doi.org/10.1115/1.4037287 | es_ES |
dc.description.references | Wang, X., Taghia, J., & Katupitiya, J. (2016). Robust model predictive control for path tracking of atracked vehicle with a steerable trailer in the presence of slip. IFAC-PapersOnLine , 49 (16), 469-474. DOI: 10.1016/j.ifacol.2016.10.085. https://doi.org/10.1016/j.ifacol.2016.10.085 | es_ES |
dc.description.references | Yuan, J. (2017). Hierarchical motion planning for multisteering tractor-trailer mobile robots with on-axle hitching. IEEE/ASME Transactions on Mechatronics , 22 (4), 1652-1662. DOI: 10.1109/TMECH.2017.2695651. https://doi.org/10.1109/TMECH.2017.2695651 | es_ES |
dc.description.references | Zhao, H., Chen, W., Zhou, S., Liu, Z., Zheng, F., & Liu, Y. (2020). Online trajectory planning for an industrial tractor towing multiple full trailers. IEEE International Conference on Robotics and Automation, (págs. 6089-6095). Paris. DOI: 10.1109/ICRA40945.2020.9196656. https://doi.org/10.1109/ICRA40945.2020.9196656 | es_ES |
dc.relation.references | 10.18178/ijmerr.7.6.583-589 | es_ES |
dc.relation.references | 10.30939/ijastech..855733 | es_ES |
dc.relation.references | 10.21500/20275846.4380 | es_ES |
dc.relation.references | 10.1109/TLA.2020.9111673 | es_ES |
dc.relation.references | 10.1016/j.robot.2016.12.007 | es_ES |
dc.relation.references | 10.1145/3068796.3068820 | es_ES |
dc.relation.references | 10.1016/j.riai.2016.09.012 | es_ES |
dc.relation.references | 10.1109/TMECH.2005.863361 | es_ES |
dc.relation.references | 10.1016/j.compag.2020.105757 | es_ES |
dc.relation.references | 10.1016/j.ymssp.2019.03.016 | es_ES |
dc.relation.references | 10.1177/1464419319839848 | es_ES |
dc.relation.references | 10.1007/s12206-015-0841-3 | es_ES |
dc.relation.references | 10.1080/00423114.2020.1849745 | es_ES |
dc.relation.references | 10.1109/CVCI51460.2020.9338617 | es_ES |
dc.relation.references | 10.1109/TCST.2007.916293 | es_ES |
dc.relation.references | 10.1016/j.mechatronics.2005.03.005 | es_ES |
dc.relation.references | 10.3390/s130404485 | es_ES |
dc.relation.references | 10.1109/TIE.2013.2240631 | es_ES |
dc.relation.references | 10.1109/IECON.2009.5415436 | es_ES |
dc.relation.references | 10.1109/TMECH.2011.2181955 | es_ES |
dc.relation.references | 10.1016/j.ejcon.2021.02.005 | es_ES |
dc.relation.references | 10.1115/1.4037287 | es_ES |
dc.relation.references | 10.1016/j.ifacol.2016.10.085 | es_ES |
dc.relation.references | 10.1109/TMECH.2017.2695651 | es_ES |
dc.relation.references | 10.1109/ICRA40945.2020.9196656 | es_ES |